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XK. Grapnicar. Mernons 1N THE THERMObYNAMICS OF FLuIDs.
By J. WiLLArDp GiBss.

ArLTHOUGH geometrical representations of propositions in the ther-
modynamics of fluidx are in general use, and have done good service
in disseminating clear notions in this science, yet they have by no
means received the extension in respect to variety and generality of
which they are capable. 8o far as regards a gencral graphical
method, which can exhibit at once all the thermodynamic properties
of a fluid concerned in reversible processes, and serve alike for the
demonstration of gencral theorems and the numerical solution of par-
ticular problems, it is the general if not the universal practice to use
diagrams in which the rectilinear co-ordinates represent volume and
pressure. The object of this article is to call attention to certain dia-
grams of different construction, which afford graphical methods co-
extensive in their applications with that in ordinary use, and prefer-
able to it in many cases in respect of distinctness or of convenience.

QUANTITIES AND RELATIONS WHICH ARE TO BE REPRESENTED BY THE DIAGRAM.

We have to consider the following quantities :—

», the volume,

», the pressure,

t, the (absolute) temperature,

& the energy,

n, the entropy, J
also W, the work done, }by the body in passing from one
and I7, the heat received,* state to another.

of a given body in any
state,

These are subject to the relations expressed by the following differ-
ential equations:—

* Work spent upon the body is as usual to be considered as a negative quantity of
work done by the body, and heat given out by the body as a negative quantity of heat
received by it.

It is taken for granted that the body has a uniform temperature throughout, and that
the pressure (or expansive force) has a uniform value both for all points in the body
and for all directions. This, it will be observed, will exclude irreversible processes,
but will not entirely exclude solids, although the condition of equal pressure in all
directions renders the case very limited, in which they come within the scope of the
discussion.
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d W= apdy, (a)
de= fdH—d W, (b)
an= dt__H: (c)

where a and f are constants depending upon the units by which v, p,
W and H are measured. We may suppose our units so chosen that
a=1 and ff=1,} and write our equations in the simpler form,

de = dH—d W, (1)
d W = pdv, (2)
dH = td. | @)
Eliminating d W and dH, we have
de = tdn — pdv. (4)

The quantitics v, p, ¢, € and 7 are determined when the state of the
body is given, and it may be permitted to call them functions of the
state of the body. The state of a body, in the sense in which the
term is used in the thermodynamics of fluids, is capable of two inde-
pendent variations, so that between the five quantities v, p, ¢, ¢ and »
there exist relations expressible by three finite equations, different in
general for different substances, but always such as to be in harmony
with the differential equation (4). This equation evidently signifies
that if ¢ be expressed as function of » and #, the partial differential
co-efficients of this function taken with respect to v and to » will be
equal to —p and to ¢ respectively.}

* Equation (a) may be derived from simple mechanical considerations. Equations
(b) and () may he considered as defining the energy and entropy of any state of the
body, or more strictly as defining the differentials de and dy. That functions of the
state of the body exist, the differentials of which satisfy these equations, may easily
be deduced from the first and second laws of thormodynamics. The term entropy, it
will be observed, is here used in accordance with the original suggestion of Clausius,
and not in the sense in which it has been employed by Professor Tait and others after
his suggestion. The same quantity has been called by Professor Rankine the Thermo-
dynamic function. See Clausius, Mechanische Wirmetheorie, Abhnd. ix, §14; or
Pogg. Ann., Bd. cxxv (1865), p. 390; and Rankine, Phil. Trans., vol. 144, p. 126.

t For example, we may choose as the unit of volume, the cube of the unit of length,
—as the unit of pressure the unit of force acting upon the square of the unit of
length,—as the unit of work the unit of force acting through the unit of length,—and
as the unit of heat the thermal equivalent of the unit of work. The units of length
and of force would still be arbitrary as well as the unit of temperature.

$ An equation giving ¢ in terms of # and v, or more generally any finite equation
between ¢, 7 and v for a definite quantity of any fluid, may be considered as the funda-
mental thermodynamic equation of that fluid, as from it by aid of equations (2), (3) and
(4) may be derived all the thermodynamic properties of the fluid (so far as reversible
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On the other hand W and H are not functions of the state of the
body (or functions of any of the quantities v, p, ¢, € and 7), but are
determined by the whole series of states through which the body is
supposed to pass.

FUNDAMENTAL IDEA AND GENERAL PROPERTIES OF THE DIAGRAM.

Now if we associate a particular point in a plane with every separ-
ate state, of which the body is capable, in any continuous manner, so
that states differing infinitely little are associated with points which
are infinitely near to each other,* the points associated with states of
equal volume will form lines, which may be called lines of equal
volume, the different lines being distinguished by the numerical value
of the volume, (as lines of volume 10, 20, 30, etc.) In the same way
we may conceive of lines of equal pressure, of equal temperature, of
equal energy, and of equal entropy. These lines we may also call
isometric, isopiestic, isothermal, isodynaniic, isentropic,t and if neces-
sary use these words as substantives,

Suppose the body to change its state, the points associated with the
states through which the body passes will form a line, which we may
call the path of the body. The conception of a path must include the
idea of direction, to express the order in which the body passes
through the series of states. With every such change of state there
is connected in general a certain amount of work done, W, and of heat
received, 77, which we may call the work and the keat of the path.}

processes are concerned,) viz: the fundamental equation with equation (4) gives the
three relations existing between v, p, & ¢ and 7, and these relations being known,
equations (2) and (3) give the work W and heat H for any change of state of the
fluid.

* The method usually employed in treatises on thermodynamics, in which the
rectangular co-ordinates of the point are made proportional to the volume and pressure
of the body, is a single example of such an association.

+ These lines are usually known by the name given them by Rankine, adiabatic.
If, however, we follow the suggestion of Clausius and call that quantity entropy, which
Rankine called the thermodynamic function, it seems natural to go one step farther,
and call the lines in which this quantity has a constant value isentropic.

1 For the sake of brevity, it will be convenient to use language which attributes to
the diagram properties which belong to the associated states of the body. Thus it
can give rise to no ambiguity, if we speak of the volume or the temperature of a point
in the diagram, or of the work or heat of a line, instead of the volume or temperature
of the body in the state associated with the point, or the work done or the heat re-
coived by the body in passing through the states associated with the points of the
line. In like manner also we may speak of the body moving along a line in the dia-
gram, instead of passing through the series of states represented by the line.
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The value of these quantitics may be calculated from cquations (2)
and (3), '

dW=pdv

dH = tdp,
i e., W= /pdv (5)
H = ftdn, (6)

the integration being carried on from the beginning to the end of the
path. If the direction of the path ix reversed, W and H change
their signs, remaining the same in absolute value.

If the changes of state of the body form a cyele, i. e., if the final
state is the same as the initial] the path becomes a circwit, and the
work done and heat reccived are equal; as may be seen from equation
(1), which when integrated for this case hecomes 0 =H— W,

The circuit will enclose a certain area, which we may consider as
positive or negative according to the direction of the circuit which
circumsceribes it.  The direction in which areas must be circum-
seribed in order that their value may be positive, is of course arbi-
trary. In other words, if & and y are the rectangular co-ordinates,
we may define an area either as fyde, or as fady.

If an area be divided into any number of parts, the work done in
the cireuit bounding the whole area is equal to the sum of the work
done in all the cireuits bounding the partial areas. This is evident
from the consideration, that the work done in each of the lines which
separate the partial areas appears twice and with contrary signs in
the sum of the work done in the circuits bounding the partial areas.
Also the heat reccived in the circuit bounding the whole area is equal
to the sum of the heat received in all the circuits bounding the partial
areas.*

If all the dimensions of a cirenit are infinitely small, the ratio of
the included area to the work or heat of the circuit is independent of
the shape of the circuit and the direction in which it is described, and
varies only with its position in the diagram. That this ratio is
independent of the direction in which the circuit is described, is evi-
dent from the consideration that a reversal of this direction simply
changes the sign of both terms of the ratio. To prove that the ratio

* The conception of areas as positive or negative renders it unnecessary in proposi-
tions of this kind to state explicitly the direction in which the circuits are to Le
described. For the directions of the circuits are determined by the rigns of the areas,
and the signs of the partial areas must be the samne as that of the area out of which

they were formed.
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is independent of the shape of the circuit, let us suppose the area
ABCDE (fig. 1) divided up by an infinite number of isometrics v,v,,
vy V,, etc, with equal differ- Fig. 1.

ences of volume dv, and an

infinite number of isopiestics

P1P1y PaP2, ete., with equal dif-

ferences of pressure dp. Now

from the principle of continuity,

as the whole figure is infinitely

small; the ratio of the area of

one of the small quadrilaterals

into which the figure is divided

to the work done in passing

around it is approximately the

same for all the different quad.

rilaterals. Therefore the area

of the fignre composed of all the complete quadrilaterals which fall
within the given circuit has to the work done in circumscribing this
figure the same ratio, which we will call y. But the area of this
figure is approximately the same as that of the given circuit, and the
work done in deseribing this figure is approximately the same as that
done in describing the given circuit, (eq. 5). Therefore the area
of the given circuit has to the work done or heat received in that
circuit this ratio y, which is independent of the shape of the
circuit.

Now if we imagine the systems of equidifferent isometrics and
isopiestics, which have just been spoken of, extended over the whole
diagram, the work done in circumscribing one of the small quadri-
laterals, so that the increase of pressure directly precedes the increase
of volume, will have in every part of the diagram a constant value,
viz., the product of the differences of volume and pressure (dvXdp),
as may easily be proved by applying equation (2) successively to its
four sides. But the area of one of these quadrilaterals, which we
could consider as constant within the limits of the infinitely small cir-
cuit, may vary for different parts of the diagram, and will indicate
proportionally the value of y, which is equal to the area divided by
dv X dp.

In like manner, if we imagine systems of isentropics and isother-
mals drawn throughout the diagram for equal differences dr and d,
the heat received in passing around one of the small quadrilaterals,
so that the increase of ¢ shall direetly preceed that of 2, will be the
constant product X dt, as may be proved by equation (3), and the
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value of y, which is equal to the area divided by the heat, will be
indicated proportionally by the areas.*

This (uantity p, which is the ratio of the area of an infinitely small
eircuit to the work done or heat received in that circuit, and which
we may call the scale on which work and heat are represented by
areas, or more briefly, the scale of work and heat, may have a
constant value throughout the diagram or it may have a varying
value. The diagram in ordinary use affords an example of the first
case, as the area of a circuit is everywhere proportional to the work
or heat. There are other diagrams which have the same property,
and we may call all such diugrams of constant scale.

In any case we may consider the scale of work and heat as known
for every point of the diagram, so far as we are able to draw the
isometrics and isopicstics or the isentropics and isothermals. If we

* The indication of the value of y by systems of equidifferent isometrics and isopies-
tics, or isentropica and isothermals, is explained above, because it seems in accordance
with the spirit of the graphical method, and because it avoids the extraneous consider-
ation of the co-ordinates. If, however, it is desired to have analytical expressions for
the value of y based upon the relations between the co-ordinates of the point and the
state of the body, it is easy to deduce such expressions as the following, in which z
and y are the roctangular co-ordinates, and it is supposed that the sign of an area is
determined in accordance with the equation A =/ ydx :—

1 _dv dp dp dv _dgp dt dt dy

@ a ap
where v and p are the independent variables ;—or
_dx dy dy dx

Y=g T G

Tdp dt  dp dt
where 7 and ¢ are the independent variables ;—or
_ d%
1 _ dvdy
Y oz dy_dy 4,
dv dy dv dy
whore v and # are the independent variables.

1
These and similar expressions for 5 mey be found by dividing the value of the work

or heat for an infinitely small circuit by the area included. This operation can be
most conveniently performed upon a circuit consisting of four lines, in each of which
one of the independent variables is constant. E. g., the last formula can be most
eagily found from an infinitely small circuit formed of two isometrics and two isen-
tropics.
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write 6 W and & /7 for the work and heat of an infinitessimal circuit,
and 64 for the area included, the relations of these quantities are
thus expressed :—* '

sW=6H= % o A. (1)

We may find the value of W and H for a circuit of finite dimensions
by supposing the included area A divided into areas 6.4 infinitely
small in all directions, for which therefore the above equation will
hold, and taking the sum of the values of 6 or § W for the various
areas 4. Writing W¢ and H€ for the work and heat of the circuit
C, and 2°¢ for a summation or integration performed within the
limits of this circuit, we have

W= Ho=3¢ ; o4, ®)

We have thus an expression for the value of the work and heat of a
circuit involving an integration extending over an area instead of one
extending over a line, a8 in equations (5) and (6).

Similar expressions may be found for the work and the heat of a
path which is not a circuit. For this case may be reduced to the
preceding by the consideration that W=0 for a path on an iso-
metric or on the line of no pressure (eq. 2), and H=0 for a path on
an isentropic or on the line of absolute cold. Hence the work of any
path § is equal to that of the circuit formed of S, the isometric of
the final state, the line of no pressure and the isometric of the initial
state, which circuit may be represented by the notation [8, v", p?, v'].
And the heat of the same path is the same as that of the circuit .S, ",
t°, #']. ‘Therefore using W* and H?® to denote the work and heat of
any path S, we have .

wi= 578 ”']% o4, )

\ Sy '1 tuv
Ho= 315708711 A, (10)

where as before the limits of the integration are denoted by the ex-

* To avoid confusion, as d W and dH are generally used and are used elsewhere in
this article to denote the work and heat of an infinite short path, a slightly different
notation,  Wand /1. is here used to denote the work and heat of an infinitely small
circuit. So 4A is used to denote an element of area which is infinitely small in all
directions, as the letter d would only imply that the element was infinitely small in one
direction. So also below. the integration or summation which extends to all the ele-
ments written with ¢ is denoted by the character 3, as the character /' naturally
refers to elements written with d.

TRANS. CONNECTICUT ACAD., VOL. II. 24 APRIL, 1873,
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pression occupying the place of an index to the sign 2.* These
equations evidently include equation (8) as a particular case.

It is easy to form a material conception of these relations. If we
imagine, for example, mass inherent in the plane of the diagram with

a varying (superficial) density represented by }’, then = ’1;6‘A will

evidently denote the mass of the part of the plane included within
the limits of integration, this mass being taken positively or nega-
tively according to the direction of the circuit.

Thus far we have made no supposition in regard to the nature of
the law, by which we associate the points of a plane with the states
of the body, except a certain condition of continuity. Whatever law
we may adopt, we obtain a method of representation of the thermo-
dynamic properties of the body, in which the relations existing
between the functions of the state of the body are indicated by a
net-work of lines, while the work done and the heat received by the
body when it changes its state are represented by integrals extend-
ing over the clements of a line, and also by an integral extending
over the elements of certain areas in the diagram, or, if we choose to
introduce such a consideration, by the mass belonging to these areas.

The different diagrams which we obtain by different laws of asso-
ciation are all such as may be obtained from one another by a process
of deformation, and this consideration is sufficient to demonstrate

* A word should be said in regard to the sense in which the above propositions
should be understood. If beyond the limits, within which the relations of v, p, ¢, ¢
and 7 are known and which we may call the limits of the known field, we continue the
isometrics, isopiestics, &c., in any way we please, only subject to the condition that the
relations of v, p, 4 ¢ and 7 shall be consistent with the equation de=tdy—pdy, then in
calculating the values of quantities W and H determined by the equations d W=pdyv
and dH=tdn for paths or circuits in any part of the diagram thus extended, we may
use any of the propositions or processes given above, as these three equations have
formed the only bagis of the reasoning. We will thus obtain values of W and H, which
will be identical with those which would be obtained by the immediate application of
the equations d W=pdv and d H=tdy to the path in question, and which in the case of
any path which is entirely contained in the known fleld will be the true values of the
work and heat for the change of state of the body which the path represents. We
may thus use lines outside of the known field without attributing to them any physical
signification whatever, without considering the points in the lines as representing any
states of the body. If however, to fix our ideas, we choose to conceive of this part of
the diagram as having the same physical interpretation as the known fleld, and to
enunciate our propositions in language based upon such a conception, the unreality or
even the impossibility of the states represented by the lines outside of the known field
cannot lead to any incorrect results in regard to paths in the known fleld.
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their properties from the well-known properties of the diagram in
which the volume and pressure are represented by rectangular co-
ordinates. For the relations indicated by the net-work of isometrics,
isopiestics ete., are evidently not altered by deformation of the sur-
face upon which they are drawn, and it' we conceive of mass as belong-
ing to the surface, the mass included within given lines will also not
be effected by the process of deformation. If, then, the surface upon
which the ordinary diagram is drawn has the uniform superficial den-
sity 1, so that the work and heat of a circuit, which are represented
in this diagram by the included area, shall also be represented by
the mass included, this latter relation will hold for any diagram
formed from this by deformation of the surface on which it is drawn.

The choice of the method of representation is of course to be deter-
mined by considerations of simplicity and convenience, especially in
regard to the drawing of the lines of equal volume, pressure, tempera-
ture, energy and entropy, and the estimation of work and heat. There
is an obvious advantage in the use of diagrams of constant scale, in
which the work and heat are represented simply by areas. Such dia-
grams may of course be produced by an infinity of different methods,
as there is no limit to the ways of deforming a plane figure without
altering the magnitude of its elements. Among these methods, two
are especially important,—the ordinary method in which the volume
and pressure are represented by rectilinear co-ordinates, and that in
which the entropy and temperature are so represented. A diagram
formed by the former method may be called, for the sake of distinc-
tion, a volume-pressure diagram,—one formed by the latter, an entropy-
temperature diagram. That the latter as well as the former satisties
the condition that y=1 throughout the whole diagram, may be seen
by reference to page 313.

THE ENTROPY-TEMPERATURE DIAGRAM COMPARED WITH THAT IN ORDINARY USE.

Considerations independent of the nature of the body in question.

As the general equations (1), (2), (3) are not altered by interchang-
ing », —=p and — W with », ¢ and H respectively, it is evident that,
so far as these equations are concerned, there is nothing to choose
between a volume-pressure and an entropy-temperature diagram. In
the former, the work is represented by an area bounded by the path
which represents the change of state of the body, two ordinates and
the axis of abscissas. The same is true of the heat reccived in the
latter diagram. Again, in the former diagram the heat received is
represented by an area bounded by the path and certain lines, the
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character of which depends upon the nature of the body under con-
sideration. Except in the case of an ideal body, the properties of
which are determined by assumption, these lines are more or less
unknown in a part of their course, and in any case the area will gen-
erally extend to an infinite distance. Very much the same inconven-
iences attach themselves to the areas representing work in the entropy-
temperature diagram.* There is, however, a consideration of a gen-
eral character, which shows an important advantage on the side of
the entropy-temperature diagram. In thermodynamic problems, heat
received at one temperature is by no means the equivalent of the
same amount of heat received at another temperature. For example,
a supply of a million calories at 150° is a very different thing from a
supply of a million calories at 50°. But no such distinction exists in
regard to work. This is a result of the general law, that heat can
only pass from a hotter to a colder body, while work can be transferred
by mechanical means from one fluid to any other, whatever may be

* In neither diagram do these circumstances create any serious difficulty in the esti-
mation of areas representing work or heat. It is always possible to divide these areas
into two parts, of which one is of finite dimensions, and the other can be calculated in

the simplest manner. Thus, in the entropy-tem-
perature diagram, the work done in a path AB
(fig. 2) is represented by the area included by the
B path AB, the isometric BC, the line of no pressure
and the isometric DA. The line of no pressure
and the adjacent parts of the isometrics in the
case of an actual gas or vapor are more or less
undetermined in the present state of our knowl-
g edge, and are likely to remain 8o ; for an ideal gas
0 7 the line of no pressure coincides with the axis of
abscissas, and is an asymptote to the isometrics.
But, be this as it may, it is not necessary to examine the form of the remoter parts of
the diagram. 1f we draw an isopiestic MN, cutting AD and BC, the area MNCD, which
represents the work done in MN, will be equal to p(v”’—v’), where p denotes the pre-
sure in MN, and »”” and v’ denote the volumes at B and A respectively (eq. 6). Hence
the work done in AB will be represented by ABNM +p(v”—v’). In the volume-
pressure diagram, the areas representing heat may be divided by an isothermal, and
treated in a manner entirely analogous.

Or, we may make use of the principle, that, for a path which begins and ends on the
same isodynamic, the work and heat are equal, as appears by integration of equation
(1). Hence, in the entropy-temperature diagram, to find the work of any path, we may
extend it by an irometric (which will not alter its work), so that it shall begin and end
on the same isodynamic, and then take the heat (instead of the work) of the path thus
extended. This method was suggested by that employed by Cazin (Théorie élémen-
taire des Machines & Air Chaud, p. 11) and Zeuner (Mechanische Warmetheorie, p. 80)
in the reverse case, viz: to find the heat of a path in the volume-pressure diagram.

Fig. 2.
t A
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the pressures. Hence, in thermodynamic problems, it is generally
necessary to distinguish between the quantities of heat received or
given out by the body at different temperatures, while as far as work
is concerned, it is generally sufficient to ascertain the total amount
performed. If, then, several heat-areas and one work-area enter into
the problem, it is evidently more important that the former should be
simple in form, than that the latter should be so. Moreover, in the
very common case of a circuit, the work-area is bounded entirely by
the path, and the form of the irometrics and the line of no pressure
are of no especial consequence.

It is worthy of notice that the simplest form of a perfect thermody-
namic engine, so often described in treatises on thermodynamics, is
represented in the entropy-tempera- Fig. 3.
ture diagram by a figure of extreme A B
simplicity, viz: a rectangle of which !
the sides are parallel to the co-ordi-
nate axes. Thus in figure 3, the D
circuit ABCD may represent the se-
ries of states through which the fluid
is made to pass in such an engine,
the included area representing the
work done, while the area ABFE
represents the heat received from the heater at the highest tempera-
ture AE, and the area CDEF represents the heat transmitted to the
cooler at the lowest temperature DE.

There is another form of the perfect thermodynamic engine, viz:
one with a perfect regenerator as defined by Rankine (Phil. Trans.
vol. 144, p. 140), the representation
of which becomes peculiarly simple
in the entropy-temperature diagram.
The circuit consists of two equal
straight lines AB and CD (fig. 4)
parallel to the axis of abscissas, and
two precisely similar curves of any
form BC and AD. The included
area ABCD represents the work
done, and the areas ABba and CDdc
represent respectively the heat re-
ceived from the heater and that transmitted to the cooler. The heat
imparted by the fluid to the regencrator in passing from B to C, and
afterward restored to the fluid in its passage from D to A, is repre-
sented by the areas BCeb and DAad.

0 E F n

Fig. 4.
t A B

(0] d a c b n
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It is often a matter of the first importance in the study of any ther-
modynamic engine, to compare it with a perfect engine. Such a com-
parison will obviously be much facilitated by the use of a method in
which the perfect engine is represented by such simple forms,

The method in which the co-ordinates represent volume and pressure
has a certain advantage in the simple and elementary character of the
notions upon which it is based, and its analogy with Watt’s indicator
has doubtless contributed to render it popular. On the other hand,
a method involving the notion of entropy, the very existence of which
depends upon the second law of thermodynamics, will doubtless seem
to many far-fetched, and may repel beginners as obscure and difticult
of comprehension. This inconvenience is perhaps more than counter-
balanced by the advantages of a method which makes the second law
of thermodynamics so prominent, and gives it so clear and elementary
an expression. The fact, that the different states of a fluid can be
represented by the positions of a point in a plane, so that the ordi-
nates shall represent the temperatures, and the heat received or given
out by the fluid shall be represented by the area bounded by the line
representing the states through which the body passes, the ordinates
drawn through the extreme points of this line, and the axis of abscis-
sas,—this fact, clumsy as its expression in words may be, is one which
presents a clear image to the eye, and which the mind can readily
grasp and retain. It is, however, nothing more nor less than a geo-
metrical expression of the second law of thermodynamics in its appli-
cation to fluids, in a form exceedingly convenient for use, and from
which the analytical expression of the same law can, if desired, be at
once obtained. If, then, it is more important for purposes of instruc-
tion and the like to familiarize the learner with the second law, than
to defer its statement as long as possible, the use of the entropy-
temperature diagram may serve a useful purpose in the popularizing
of this science. ‘

The foregoing considerations are in the main of a general character,
and independent of the nature of the substance to which the graphical
method is applied. On this, however, depend the forms of the iso-
metrics, isopiestics and isodynamics in the entropy-temperature dia-
gram, and of the isentropics, isothermals and isodynamics in the
volume-pressure diagram. As the convenience of a method depends
largely upon the ease with which these lines can be drawn, and upon
the peculiarities of the fluid which has its properties represented in
the diagram, it is desirable to compare the methods under considera-
tion in some of their most important applications. We will commence
with the case of a perfect gas.
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Case of a perfect gus.

A perfect or ideal gas may be defined as such a gas, that for any
constant quantity of it the product of the volume and the pressure
varies as the temperature, and the energy varies as the temperature, i. e.,

w=a, (2)*
E=ct. ()
The significance of the constant a is sufficiently indicated by equation
(a). The significance of ¢ may be rendered more evident by differen-
tiating equation (B) and comparing the result

de=cdt
with the general equations (1) and (2), viz:
de=dH —dW, dW=pdv.
Ifdv=0,dW=0,and dll=cdt,i.e,

((%I) = ot (¢)

1]

i. ¢., ¢ is the quantity of heat necessary to raise the temperature of the
body one degree under the condition of constant volume. It will be
observed, that when different quantities of the same gas are consid-
ered, a and ¢ both vary as the quantity, and ¢« is constant; also,
that the value of ¢=-« for different gases varies as their specific heat -
determined for equal volumes and for constant volume.

With the aid of equations (A) and (B) we may eliminate p and ¢
from the general equation (4), viz: ‘

de=tdn - pdv,

which is then reduced to

de _ 1, ¢ flﬂ,
c c v
and by integration to
=2 _ 2 og
log ¢ = s log ».1 ()

* In this article, all equations which are designated by arabic numerals subsist for
any body whatever (subject to the condition of uniform pressure and temperature), and
those which designated by small capitals subsist for any quantity of a perfect gas as
defined above (subject of course to the same condittons).

+ A subscript letter after a differential co-efficient is used in this article to indicate
the quantity which is made constant in the differentiation.

$ If we use the letter ¢ to denote the buse of the Naperian system of logarithns,
equation (D) may also be written in the form

7 a

c c
e=e v

This may be regarded as the fundamental thermodynamic equation of an ideal gas. See
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The constant of integration becomes 0, if we call the entropy 0 for
the state of which the volume and energy are both unity.

Any other equations which subsist between v, p, ¢, £ and » may be
derived from the three independent equations (), (B) and (p). If we
eliminate & from (8) and (p), we have

n=alogv4clogt+clogec. ()
Eliminating v from (A) and (x), we have
n=(atc)logt— alogp+ clogc+ alog a. (F)
Eliminating ¢ from (1) and (E), we have
1 = (a+c) log v 4 ¢ log p 4 ¢ log 7:—. (6)

If v is constant, equation () becomes
n=c log ¢t + Const.,

i. e., the isometrics in the entropy-temperature diagram are logarith-

mic curves identical with one another in form,—a change in the value

of v having only the effect of moving the curve parallel to the axis of

n. If p is constant, equation (¥) becomes

n = (a+4-c) log t + Const.,

so that the isopiestics in this diagram have similar properties. This

identity in form diminishes greatly the labor of drawing any consid-
" erable number of these curves. For if a card or thin board be cut in

the form of one of them, it may be used as a pattern or ruler to draw

all of the same system.

The isodynamics are straight in this diagram (eq. B).

To find the form of the isothermals and isentropics in the volume-
pressure diagram, we may make ¢ and » constant in equations (a)
and () respectively, which will then reduce to the well-known equa-
tions of these curves:— ’

pv = Const.,
and P° 021 ¢ = Const.

The equation of the isodynamics is of course the same as that of the
isothermals. None of these systems of lines have that property of
identity of form, which makes the systems of isometrics and isopies.
tics s0 easy to draw in the entropy-temperature diagram,

the last note on page 310. It will be observed, that there would be no real loss of
generality if we should choose, as the body to which the letters refer, such a quantity
of the gas that one of the constants a and ¢ should be equal to unity.
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Case of rondensable vapors.

The case of bodies which pass from the liquid to the gaseous condi-
tion is next to be considered. It is usual to assume of such a body,
that when sufficiently superheated it approaches the condition of a
perfect gas. If| then, in the entropy-temperature diagram of such a
body we draw systems of isometrics, isopiestics and isodynamics, as if
for a perfect gas, for proper values of the constants @ and ¢, these will
be asymptotes to the true isometrics, etc., of the vapor, and in many
cases will not vary from them greatly in the part of the diagram which
represents vapor unmixed with liquid, except in the vicinity of the
line of saturation. In the volume-pressure diagram of the same body,
the isothermals, isentropics and isodynamics, drawn for a perfect gas
for the same values of @ and ¢, will have the same relations Yo the true
isothermals, etc. )

In that part of any diagram which represents a mixture of vapor
and liquid, the isopiestics and isothermals will be identical, as the
pressure is determined by the temperature alone. In hoth the dia-
grams which we are now comparing, they will be straight and parallel
to the axis of abscissas. The form of the isometrics and isodynamics
in the entropy-temperature diagram, or that of the isentropics and
isodynamics in the volume-pressure diagram, will depend upon the
nature of the fluid, and probably cannot be expressed by any simple
equations. The following property, however, renders it easy to con-
struct equidifferent systems of these lines, viz: any such system will
divide any isothermal (isopiestic) into equal segments.

It remains to consider that part of the dingram which represents
the body when entirely in the condition of liquid. The fundamental
characteristic of this condition of matter is that the volume is very
nearly constant, so that variations of volume are generally entirely in-
appreciable when represented graphically on the same scale on which
the volume of the body in the state of vapor is represented, and both
the variations of volume and the connected variations of the connected
quantitics may be, and generally are, neglected by the side of the
variations of the same quantities which occur when the body passes
to the state of vapor.

" Let us make, then, the usual assumption that v is constant, and see
how the general equations (1), (2), (3) and (4) are thereby affected.
We have first,

dv =0,
then dW=o,
and de =tdn
If we add dH =t dy,

TRANS. CONNECTICUT ACAD., VOL. II. 26 APRIL, 1873.
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these four equations will evidently be equivalent to the three inde-
pendent equations (1), (2) and (3), combined with the assumption
which we have just made. For a liquid, then, ¢, instead of being a
function of two quantities v and 7, is a function of 7 alone,—t is also
a function of # alone, being equal to the differential co-efficient of the
function &; that is, the value of one of the three quantities ¢, ¢ and »,
is sufticient to determine the other two. The value of v, moreover, is
fixed without reference to the values of ¢, & and # (so long as these do
not pass the limits of values possible for liquidity) ; while p does not
enter into the equations, i e.,, p may have any value (within certain
limits) without affecting the values of ¢, ¢, 7 or v. If the body change
its state, continuing always liquid, the value of W for such a change
is 0, and that of H is determined by the values of any one of the
three quantities ¢, € and n. Tt is, therefore, the relations between ¢, ¢,
n and 7, for which a graphical expression is to be sought; a method,
therefore, in which the co-ordinates of the diagram are made equal
to the volume and pressure, is totally inapplicable to this particu-
lar case; v and p are indeed the only two of the five functions of the
state of the body, v, p, ¢, ¢ and », which have no relations either to
each other, or to the other three, or to the quantities W and H, to be
expressed.* The values of v and p do not really determine the state
of an incompressible fluid,—the values of 7, ¢ and » are still left
undetermined, so that through every point in the volume-pressure
diagram which represents the liquid there must pass (in general) an
infinite number of isothermals, isodynamies and isentropics. The
character of this part of the diagram is as follows:—the states of
liquidity are represented by the points of a line parallel to the axis of
pressures, and the isothermals, isodynamics and isentropics, which
cross the field of partial vaporization and meet this line, turn upward
and follow its course.t

In the entropy-temperature diagram the relations of ¢, & and 5 are
distinctly visible, The line of liquidity is a curve AB (fig. 5) deter-
mined by the relation between ¢ and 7. This curve is also an iso-

* That is, v and p have no such relations to the other quantities, as are expressible
by equations; p, however, cannot be less than a certain function of &

4 All these difficulties are of course removed when the differences of volume of the
liquid at different temperatures are rendered appreciable on the volume-pressure
diagram. This can be done in various ways,—uamong others, by choosing as the body
to which v, ete., refer, a sufficiently large quantity of the fluid. “But, however we do it,
we must evidently give up the possibility of representing the body in the state of vapor
in the same diagram without making its dimensions enormous.
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metric. Every point of it has a definite volume, temperature, entropy
and energy. The latter is indicated by the isodynamics E,E,, E,E,,
etc., which cross the region of par-
tial vaporization and terminate in
the line of liquidity. (They do not
in this diagram turn and follow the N
line.) If the body pass from one
state to another, remaining liquid,
as from M to N in the figure, the
heat received is represented as usual
by the area MNnm. That the work
done is nothing, is indicated by the
fact that the line AB is an isometric.
Only the isopiestics in this diagram
are superposed in the line of fluidity,
turning downward where they meet
this line and following its course, so
that for any point in this line the pressure is undetermined. This is,
however, no inconvenience in the diagram, as it simply expresses the
fact of the case, that when all the quantities v, ¢, ¢ and # are fixed,
the pressure is still undetermined.

Fig. 6.
t B

(o) m n n

DIAGRAMS IN WHICH THE ISOMETRICS, ISOPIESTICS, ISOTHERMALS, ISODYNAMICS AND
ISENTROPICS OF A PERFECT GAS ARE ALL STRAIGHT LINES.

There are many cases in which it is of more importance that it
should be easy to draw the lines of equal volume, pressure, tempera-
ture, energy and entropy, than that work and heat should be repre-
gented in the simplest manner. In such cases it may be expedient to
give up the condition that the scale ()) of work and heat shall be
constant, when by that means it is possible to gain greater simplicity
in the form of the lines just mentioned.

In the case of a perfect gas, the three relations hetween the quanti-
ties v, p, ¢, € and # are given on page 321, equations (1), () and (p).
These equations may be easily be transformed into the three

log p 4 log v — log ¢t =log a, ()
log ¢ = log ¢t = log ¢, (1)
n—clog & —alogv=0; ()

so that the three relations between the quantities log v, log p, log ¢,
log &, and # are expressed by linear equations, and it will be possible
to make the five systems of lines all rectilinear in the same diagram,
the distances of the isometries being proportional to the differences



326 J. W. Qibbs on Graphical Methods in the

of the logarithms of the volumes, the distances of the isopiestics being
proportional to the differences of the logarithms of the pressures, and
so with the isothermals and the isodynamics,—the distances of the
isentropics, however, being proportional to the differences of entropy
simply.

The scale of work and heat in such a diagram will vary inversely
as the temperature. For if we imagine systems of isentropics and iso-
thermals drawn throughout the diagram for equal small differences of
entropy and temperature, the isentropics will be equidistant, but the
distances of the isothermals will vary inversely as the temperature,
and the small quadrilaterals into which the diagram is divided will
vary in the same ratio: .. ¥ »» 1 ~¢ (See page 313.)

So far, however, the form of the diagram has not been completely
defined. This may be done in various ways: e.g., if « and y be the
rectangular co-ordinates, we may make

{z:logv, or {m:r;, or %z:logv,etc.
y=logp; y=logt; y=n;

Or we may set the condition that the logarithms of volume, of pres-
sure and of temperature, shall be represented in the diagram on the

B same scale. (The logarithms of energy
g. 6. .
are necessarily represented on the same
n v : s
scale as those of temperature.) This will
\ require that the isometrics, isopiestics and
t isothermals cut one another at angles of
\ 60°.
The general character of all these dia-

grams, which may be derived from one
another by projection by parallel lines,

D A may be illustrated by the case in which
¥ P x=log v, and y = log p.

Through any point A (fig. 6) of such a
t’ diagram let there be drawn the isometric
vv', the isopiestic pp”, the isothermal tt’
and the isentropic #7'. The lines pp’ and
vv' are of course parallel to the axes. Also by equation (1)

(%Y _ dlogp) _
tan tAp = (Zl;)t— ((l log v . =
and by (c) p 1
tan Ap = (%) = (%:) = - c._'gﬁ.
n n

v ”
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Therefore, if we draw another isometric, cutting »v', tt', and pp’ in
B, C and D,

BD e¢+a BC _a CD _ ¢

CD~ ¢’ CD ™~ ¢ BC o«
Hence, in the diagrams of different gases, CD = BC will be propor-
tional to the specific heat determined for equal volumes and for con-
stant volume.

As the specific heat, thus determined, has probably the same value
for most simple gases, the isentropics will have the same inclination in
diagrams of this kind for most simple gases. This inclination may
easily be found by a method which is independent of any units of
measurement, for '

BD:CD:: (Z:zgﬁ) (Z :ogg) i (?) :(gi),

gv/, og v/, v/, \dv/,

i e., BD +CD is equal to the quotient of the co-efficient of elasticity
under the condition of no transmission of heat, divided by the co-
efficient of elasticity at constant temperature. This quotient for a
simple gas is generally given as 1.408 or 1.421. As CA=-CD=
A/2 = 1.414, BD is very nearly equal to CA (for simple gases), which
relation it may be convenient to use in the construction of the diagram.

In regard to compound gases the rule seems to be, that the specific
heat (determined for equal volumes and for constant volume) is to the
specific heat of a simple gas inversely as the volume of the compound
is to the volume of its constituents (in the condition of gas); that is,
the value of BC=-CD for a compound gas is to the value of BC=CD
for a simple gas, as the volume of the compound is to the volume of
its constituents. Therefore, if we compare the diagrams (formed by
this method) for a simple and a compound gas, the distance DA and
therefore CD being the same in each, BC in the diagram of the com-
pound gas will be to BC in the diagram of the simple gas, as the
volume of the compound is to the volume of its constituents.

Although the inclination of the isentropics is independent of the
quantity of gas under consideration, the rate of increase of » will vary
with this quantity. In regard to the rate of increase of 2, it is evident
that if the twhole diagram be divided into squares by isopiestics and
isometrics drawn at equal distances, and isothermals be drawn as
diagonals to these squares, the volumes of the isometrics, the pressures
of the isopiestics and the temperatures of the isothermals will each
form a geometrical series, and in all these series the ratio of two con-
tiguous terms will be the same.
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The properties of the diagrams obtained by the other methods men-
tioned on page 326 do not differ essentially from those just described.
For example, in any such diagram, if through any point we draw an
isentropic, an isothermal and an isopiestic, which cut any isometric
not passing through the same point, the ratio of the segments of the
isometric will have the value which has been found for BC: CD.

In treating the case of vapors also, it may be convenient to use
diagrams in which @ = log v and y = log p, or in which # = » and
y = log t; but the diagrams formed by these methods will evidently
be radically different from one another. It is to be observed that each
of these methods is what may be called a method of' definite scale for
work and heat ; that is, the value of y in any part of the diagram is
independent of the properties of the fluid considered. In the first
method y = e—;*'_”’ in the second y = éll-,. In this respect these methods
have an advantage over many others. For example, if we should
make x = log v, y = », the value of y in any part of the diagram
would depend upon the properties of the fluid, and would probably
not vary in any case, except that of a perfect gas, according to any
simple law. .

The conveniences of the entropy-temperature method will be found
to belong in nearly the same degree to the method in which the co-
ordinates are equal to the entropy and the logarithm of the tempera-
ture. No serious difficulty attaches to the estimation of heat and
work in a diagram formed on the latter method on account of' the
variation of the scale on which they are represented, as this variation
follows so simple a law. It may often be of use to remember that

such a diagram may be reduced to an entropy-

B temperature diagram by a vertical compression
or extension, such that the distances of the iso-
thermals shall be made proportional to their
differences of temperature. Thus if we wish

to estimate the work or heat of the circuit

¢ ABCD (fig. 7), we may draw a number of equi-
distant ordinates (isentropics) as if to estimate

the included area, and for each of the ordinates

D take the differences of temperature of the points

where it cuts the circuit; these differences of temperature will be
equal to the lengths of the segments made by the corresponding
circuit in the entropy-temperature diagram upon a corresponding
system of equidistant ordinates, and may be used to calculate the

Fig. 1.
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area of the circuit in the entropy-temperature diagram, i.e., to find
the work or heat required. We may find the work of any path by
applying the same process to the circuit formed by the path, the iso-
metric of the final state, the line of no pressure (or any isopiestic ; see
note on page 318), and the isometric of the initial state. And we may
find the heat of any path by applying the same process to a circuit
formed by the path, the ordinates of the extreme points and the line
of absolute cold. That this line is at an infinite distance occasions no
difficulty. The lengths of the ordinates in the entropy-temperature
diagram which we desire are given by the temperature of points in
the path determined (in either diagram) by equidistant ordinates.

The properties of the part of the entropy-temperature diagram rep-
resenting a mixture of vapor and liquid, which are given on page 323,
will evidently not be altered if the ordinates are made proportional to
the logarithms of the temperatures instead of the temperatures simply.

The representation of specific heat in the diagram under discussion
is peculiarly simple. The specific heat of any snbstance at constant
volume or under constant pressure may be defined as the value of

(dE (dH) . [ dn dn
—) or(—=-] ,i.c., k— ———) or (———) ,
dt v dt » dlogtv dlogtp

for a certain quantity of the substance. Therefore, if we draw a dia-
gram, in which « = 5 and y =log ¢, for that quantity of the substance
which is used for the determination of the specific heat, the tangents
of the angles made by the isometrics and the isopiestics with the
ordinates in the diagram will be equal to the specific heat of the
substance determined for constant volume and for constant pressure
respectively. Sometimes, instead of the condition of constant volume
or constant pressure, some other condition is used in the determination
of specific heat. In all cases, the condition will be represented by a
line in the diagram, and the tangent of the angle made by this line
with an ordinate will be equal to the specitic heat as thus defined. If
the diagram be drawn for any other quantity of the substance, the
specific heat for constant volume or constant pressure, or for any other
condition, will be equal to the tangent of the proper angle in the
diagram, multiplied by the ratio of the quantity of the substance for
which the specific heat is determined to the quantity for which the
diagram is drawn.*

* From this general property of the diagram, its character in the case of a perfect
gas might be immediately deduced.
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THE VOLUME-ENTROPY DIAGRAM.

The method of representation, in which the co-ordinates of the point
in the diagram are made equal to the volume and entropy of the
body, presents certain characteristics which entitle it to a somewhat
detailed consideration, and for some purposes give it substantial
advantages over any other method. We might anticipate some of
these advantages from the simple and symmetical form of the general
equations of thermodynamics, when volume and entropy are chosen
as independent variables, viz:—*

de
P= =i (11)
de
t = (_1-77’ (12)
dW=p dv,
dH =t dn.
Eliminating p and ¢ we have also 4
le
dW= - 25 dv, (13)
de
dH = Fm dn. (14)

The geometrical relations corresponding to these equations are in
the volume-entropy diagram extremely simple. To fix our ideas, let
the axes of volume and entropy be horizontal and vertical respec-
tively, volume increasing toward the right and entropy upward.
Then the pressure taken negatively will equal the ratio of the differ-
ence of energy to the difference of volume of two adjacent points in
the same horizontal line, and the temperature will equal the ratio of
the difference of c¢nergy to the difterence of entropy of two adjacent
points in the same vertical line. Or, if a series of isodynamics be
drawn for equal infinitessimal differences of energy, any series of hori-
zontal lines will be divided into segments inversely proportional to
the pressure, and any series of vertical lines into segments inversely
proportional to the temperature. We see by equations (18) and (14),
that for a motion parallel to the axis of volume, the heat received is
0, and the work done is equal to the decrease of the energy, while for

* See page 310, equations (2), (3) and (4).

In general, in this article, where differential co-efficients are used, the quantity which
is constant in the differentiation is indicated by a subscript letter. In this discussion
of the volume-entropy diagram, however, v and # are uniformly regarded as the inde
pendent variables, and the subscript letter is omitted.
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a motion parallel to the axis of entropy, the work done is 0, and the
heat received is equal to the increase of the energy. These two
propositions are true either for elementary paths or for those of finite
length. In general, the work for any element of a path is equal to
the product of the pressure in that part of the diagram into the hori-
zontal projection of the element of the path, and the heat received is
equal to the product of the temperature into the vertical projection
of the element of the path. i

If we wish to estimate the value of the integrals fpdv and Jtdn,
which represent the work and heat of any path, by means of measure-
ments upon the diagram, or if we wish to appreciate readily by the
eye the approximate value of these expressions, or if we merely wish
to illustrate their meaning by means of the diagram ; for any of these
purposes the diagram which we are now considering will have the
advantage that it represents the differentials dv and dn more simply
and clearly than any other.

But we may also estimate the work and heat of any path by means
of an integration extending over the elements of an area, viz: by the
formulx of page 315,

We=He=3¢ ; o4,

W= s[5V 1; 24,

Ho= 35705 '/]% 8.

In regard to the limits of integration in these formule, we sce that for
the work of any path which is not a circuit, the bounding line is com-
posed of the path, the line of no pressure and two vertical lines, and
for the heat of the path, the bounding line is composed of the path,
the line of absolute cold and two horizontal lines.

As the sign of y, as well as that of 6.1, will be indeterminate until
we decide in which direction an area must be circumscribed in order
to be considered positive, we will call an area positive which is cir-
cumscribed in the direction in which the hands of a watch move.
This choice, with the positions of the axes of volume and entropy
which we have supposed, will make the value of y in most cases posi-
tive, as we shall see hereafter.

The value of y, in a diagram drawn according to this method, will
depend upon the properties of the body for which the diagram is
drawn. In this respect, this method differs from all the others which

TrANS. CONNECTICUT ACAD., VoL. II. 26 APRIL, 1873
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have heen discussed in detail in this article. It is easy to find an
expression for y depending simply upon the variations of the energy,

Fig. 8. by comparing the area and the work or
n heat of an infinitely small circuit in the
form of a rectangle having its sides
parallel to the two axes.

Let N,N,N;N, (fig. 8) be such a cir-
cuit, and let it be described in the order
— of the numerals, so that the area is posi-
— tive. Also let ¢, &,, &5, &, represent
' the energy at the four corners. The
work done in the four sides in order
commencing at N, will be &, —¢,, 0,

&,—¢&,,0. The total work, therefore,

0 - v for the rectangular circuit is

£, —&,+&,—¢,.

Now as the rectangle is infinitely small, if we call its sides dv and dp,
the above expression will be equivalent to

d3¢
T dvdn
Dividing by the area dv dy, and writing y,, , for the scale of work and

dv dn.

heat in a diagram of this kind, we have

2
! =—£—=d£=—£. (15)

The two last expressions for the value of 1-+-y, , indicate that the
value of y, , in different parts of the diagram will be indicated pro-
portionally by the segments into which vertical lines are divided by a
system of equidifferent isopiestics, and also by the segments into
which horizontal lines are divided by a system of equidifferent iso-
thermals. These results might also be derived directly from the
propositions on page 313,

As, in almost all cases, the pressure of a body is increased when it

. . dp . . -
receives heat without change of volume, d% is in general positive, and

the same will be true of y, , under the assumptions which we have

made in regard to the directions of the axes (page 330) and the defini-
tion of a positive area (page 331).

In the estimation of work and heat it may often be of use to con-
sider the deformation necessary to reduce the diagram to one of
constant scale for work and heat. Now if the diagram be so deformed,
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that each point remains in the same vertical line, but moves in this
line so that all isopiestics become straight and horizontal lines, at
distances proportional to their differences of pressure, it will evidently
become a volume-pressure diagram. Again, if the diagram be so
deformed that each point remains in the same horizontal line, but
moves in it so that isothermals becomes straight and vertical lines at
distances proportional to their differences of temperature, it will
become a entropy-temperature diagram. These considerations will
enable us to compute numerically the work or heat of any path which
is given in a volume-entropy diagram, when the pressure and tempera-
ture are known for all points of the path, in a manner analogous to
that explained on page 328.

The ratio of any element of area in the volume-pressure or the
entropy-temperature diagram, or in any other in which the scale of
work and heat is unity, to the corresponding element in the volume-
entropy diagram is represented by L o= dre 3

Yo, n dv dn
which this ratio is 0, or changes its sign, demand especial attention,
as in such cases the diagrams of constant scale fail to give a satisfac-
tory representation of the properties of the body, while no difficulty
or inconvenience arises in the use of the volume-entropy diagram.
d3e _ dp

As — dv dy— dn’
diagram which represents the body when in part solid, in part liquid,
and in part vapor. The properties of
such a mixture are very simply and 4
clearly exhibited in the volume-entropy
diagram. v

Let the temperature and the pressure
of the mixture, which are independent
of the proportions of vapor, solid and

The cases in

its value is evidently zero in that part of the

Fig. 9.

liquid, be denoted by ¢ and p'. Also X
let V, L and S (fig. 9) be points of the
diagram which indicate the volume and 5
\4

entropy of the body in three perfectly
defined states, viz: that of a vapor of temperature ¢ and pressure p/,
that of a liquid of the same temperature and pressure, and that of a
solid of the same temperature and pressure. And let vy, 7y, vy, 7z,
v, 175 denote the volume and entropy of these states. The position
of the point which represents the body, when part is vapor, part
liquid, and part solid, these parts being as u, v, and 1—u—v, is
determined by the equations
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v=pvp+vuo,4(1 - u-v) v

n=pnr+ v+ (1 —p—v)ns
where v and 7 are the volume and entropy of the mixture. The
truth of the first equation is evident. The second may be written

n—=1ns=pu(ny—ns) + v (. — ns)
or multiplying by ¢,

¢ (n—ng)=put (ny—ng) +v?¢ (n—ns.

The first member of this equation denotes the heat necessary to bring
the body from the state S to the state of the mixture in question
under the constant temperature ¢, while the terms of the second
member denote separately the heat necessary to vaporize the part u,
and to liquefy the part » of the body. _

The values of v and #» are such as would give the center of gravity
of masses u, » and 1—u—» placed at the points V, L and S.*
Hence the part of the diagram which represents a mixture of vapor,
liquid and solid, is the triangle VLS. The pressure and temperature
are constant for this triangle, i. e., an isopiestic and also an isothermal
here expand to cover a space. The isodynamics are straight and

equidistant for equal differences of energy. For gf,- = — p/, and
de

ar = ¢, both of which are constant throughout the triangle.

This case can be but very imperfectly represented in the volume-
pressure, or in the entropy-temperature diagram. For all points in
the same vertical line in the triangle VLS will, in the volume-
pressure diagram, be represented by a single point, as having the
same volume and pressure. And all the points in the same horizontal
line will be represented in the entropy-temperature diagram by a
single point, as having the same entropy and temperature. In either
diagram, the whole triangle reduces to a straight line. It must
reduce to a line in any diagram whatever of constant séale, as its area
must become 0 in such a diagram. This must be regarded as a defect
in these diagrams, as essentially different states are represented by
the same point. In consequence, any circuit within the triangle

* These points will not be in the same straight line unless

U (my~—ms):t (e — ns) i1 vy —vg: v, — Vg
a condition very unlikely to be fulfilled by any substance. The first and second terms
of this proportion denote the heat of vaporization (from the solid state) and that of
liquefaction.
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VLS will be represented in any diagram of constant scale by two
paths of opposite directions superposed, the appearance being as if a
body should change its state and then return to its original state by
inverse processes, 8o a8 to repass through the same series of states.
It is true that the circuit in question is like this combination of pro-
cesses in one important particular, viz: that W= H =0, i. e., there
is no transformation of heat into work. But this very fact, that a
circuit without transformation of heat into work is possible, is worthy
of distinct representation.

A body may have sach properties that in one part of the volume-

entropy diagram 7. yLe, an is positive and in another negative.
v n

These parts of the diagram may be separated by a line, in which
g% =0, or by one in which g% changes abruptly from a positive to a
negative value.* (In part, also, they may be separated by an area in
which Z—I:’ =0.) In the representation of such cases in any diagram
of constant scale, we meet with Fig. 10.
a difficulty of the following na- # L
ture.

Let us suppose that on the
right of the line LL (fig. 10) in A

. dp ‘

a volume-entropy diagram, F
is positive, and on the left nega-
tive. Then, if we draw any cir-
cuit ABCD on the right side of c
LL, the direction being that of
the hands of a watch, the work
and heat of the circuit will be
positive. But if we draw any
circuit EFGH in the same direc-
tion on the other side of the line
LL, the work and heat will be negative. For

1

(o] v

W=H=2

04 = Edi 04
Yo, 2 dn ’

* The line which represents the various states of water at its maximum density for
various constant pressures is an example of the first case. A substance which as a
liquid has no proper maximum density for constant pressure, but which expands in
solidifying, affords an example of the second case.
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and the direction of the circuits makes the arcas positive in both
cases. Now if we should change this diagram into any diagram of
constant scale, the areas of the circuits, as representing proportionally
the work done in each case, must necessarily have opposite signs,
i. e., the direction of the circuits must be opposite. We will suppose
that the work done is positive in the diagram of constant scale, when
the direction of the circuit is that of the hands of a watch. Then, in
that diagram, the circuit ABCD would have

b1 Fig. 11. that direction, and the circuit EFGH the
contrary direction, as in figure 11. Now if

B we imagine an indefinite number of circuits

on each side of LL in the volume-entropy

D diagram, it will be evident that to transform

such a diagram into one of constant scale,
80 as to change the direction of all the cir-
P cuits on one side of LL, and of none on the
qﬂ other, the diagram must be jfolded over
H along that line; so that the points on one
side of LL in a diagram of constant scale do
not represent any states of the body, while
. on the other side of this line, each point, for
0 v a certain distance at least, represents two
different states of the body, which in the volume-entropy diagram are
represented by points on opposite sides of the line LL. We have thus
in a part of the field two diagrams superposed, which must be care-
fully distinguished. If this be done, as by the help of different colors,
or of continuous and dotted lines, or otherwise, and it is remembered
that there is no continuity between these superposed diagrams, except
along the bounding line LL, all the general theorems which have been
developed in this article can be readily applied to the diagram. But
to the eye or to the imagination, the figure will necessarily be much
more confusing than a volume-entropy diagram.

If %; -= 0 for the line LL, there will be another inconvenience in

the use of any diagram of constant scale, viz: in the vicinity of the
line LL, %
dn
will be very greatly reduced in the diagram of constant scale, as com-
pared with the corresponding areas in the volume-entropy diagram.
Therefore, in the former diagram, either the isometrics, or the isen-
tropics, or both, will be crowded together in the vicinity of the line
LL, so that this part of the diagram will be necessarily indistinct.

,i.e, 1=y, , will have a very small value, so that areas
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It may occur, however, in the volume-entropy diagram, that the
same point must represent two different states of the body. This
occurs in the case of liquids which can be va-

porized. Let MM (fig. 12) be the line repre- ;‘lg' 1
senting the states of the liquid bordering upon !
vaporization. This line will be near to the

axis of entropy, and nearly parallel to it. If 3

the body is in a state represented by a point g

of the line MM, and is compressed without ad- E
dition or subtraction of heat, it will remain of 3 5
course liquid. Hence, the points of the space 1K
immediately on the left of MM represent sim- 5

ple liquid. On the other hand, the body being )

in the original state, if its volume should be i
increased without addition or subtraction of

heat, and if the conditions necessary for vapor- G i -

ization are present (conditions relative to the
body enclosing the liquid in question, etc.), the liquid will become
partially vaporized, but if these conditions are not present, it will con-
tinue liquid. Hence, every point on the right of MM and sufficiently
near to it represents two different states of the body, in one of which
it is partially vaporized, and in the other it is entirely liquid. If we
take the points as representing the mixture of vapor and liquid, they
form one diagram, and if we take them as representing simple liquid,
they form a totally different diagram superposed on the first. There
is evidently no continuity between these diagrams except at the line
MM; we may regard them as upon separate sheets united only along
MM. For the body cannot pass from the state of partial vaporization
to the state of liquid except at this line. The reverse process is indeed
possible; the hody can pass from the state of superheated liquid to
that of partial vaporization, if the conditions of vaporization alluded
to above are supplied, or if the increase of volume is carried beyond
a certain limit, but not by gradual changes or reversible processes.
After such a change, the point representing the state of the body will
be found in a different position from that which it occupied before,
but the change of state cannot be proper]y represented by any path,
as during the change the body does not satisfy that condition of uni-
form temperature and pressure which has been assumed throughout
this article, and which is necessary for the graphical methods under
discussion. (See note on page 309.)

Of the two superposed diagrams, that which represents simple
liquid is a continuation of the diagram on the left 6f MM, The iso-
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piestics, isothermals and isodynamics pass from one to the other
without abrupt change of direction or curvature. But that which
represents a mixture of vapor and liquid will be different in its char-
acter, and its isopiestics and isothermals will make angles in general
with the corresponding lines in the diagram of simple liquid. The
isodynamics of the diagram of the mixture, and those of the diagram
of simple liquid, will differ in general in curvature at the line MM, but
not in direction, for Z—: = —pand % =t

The case is essentially the same with some substances, as water, for
example, about the line which separates the simple liquid from a mix-
ture of liquid and solid.

In these cases the inconvenience of having one diagram superposed
upon another cannot be obviated by any change of the principle on
which the diagram is based. For no distortion can bring the three
sheets, which are united along the line MM (one on the left and two
on the right), into a single plane surface without superposition. Such
cases, therefore, are radically distinguished from those in which the
superposition is caused by an unsuitable method of representation.

To find the character of a volume-entropy diagram of a perfect gas,
we may make ¢ constant in equation (p) on page 321, which will give
for the equation of an isodynamic and isothermal

n = a log v 4 Const.,
and we may make p constant in equation (G), which will give for the
equation of an isopiestic
n= (a + ¢) log v 4 Const.
It will be observed that all the isodynamics and isothermals can be
drawn by a single pattern and so also with the isopiestics.

The case will be nearly the same with vapors in a part of the dia-
gram. In that part of the diagram which represents a mixture of
liquid and vapor, the isothermals, which of course are identical with
the isopiestics, are straight lines. For when a body is vaporized
under constant pressure and temperature, the quantities of heat re-
ceived are proportional to the increments of volume; therefore, the
increments of entropy are proportional to the increments of volume.
As ng,— = —pand :—; =t, any isothermal is cut at the same angle by
all the isodynamics, and is divided into equal segments by equidiffer-
ent isodynamics. The latter property is useful in drawing systems of
equidifferent isodynamics.
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ARRANGEMENT OF THE ISOMETRIC, ISOPIESTIO, ISOTHERMAL AND ISENTROPIO
ABOUT A POINT.

The arrangement of the isometric, the isopiestic, the isothermal and
the isentropic drawn through any same point, in respect to the order
in which they succeed one another around that point, and in respeot
to the sides of these lines toward which the volume, pressure, tem-
perature and entropy increase, is not altered by any deformation of
the surface on which the diagram is drawn, and is therefore indepen-
dent of the method by which the diagram is formed.* This arrange-
ment is determined by certain of the most characteristic thermody-
namic properties of the body in the state in question, and serves in
turn to indicate these properties. It is determined, namely, by the

value of (5—1:,) as positive,‘negative, or zero, i e., by the effect of heat
v

as increasing or diminishing the pressure when the volume is main-

tained constant, and by the nature of the internal thermodynamic

equilibrium of the body as stable or neutral,—an unstable equilib-

rium, except as a matter of speculation, is of course out of the

question.

Let us first examine the case in which (%) is positive and the
v

equilibrium is stable. As (Z—{;) does not vanish at the point in ques-
v

tion, there is a definite isopiestic passing through that point, on one

side of which the pressures are greater, and on the other less, than on

the line itself. As (ﬁ) = - (@) , the case i8 the same with the
dv /, dnl,

isothermal. It will be convenient to distinguish the sides of the iso-
metric, isopiestic, etc., on which the volume, pressure, ete., increase,
a8 the positive sides of these lines. The condition of stability requires
that, when the pressure is constant, the temperature shall increase
with the heat received,—therefore with the entropy. This may
be written [d¢: dn] ,> 0.t It also requires that, when there is no

* Tt is here assumed that, in the vicinity of the point in question, each point in the
diagram represents only one state of the body. The propositions developed in the fol-
lowing pages cannot he applied to points of the line where two superposed diagrams
are united (see pages 3356-338) without certain modifications.

dt
+ As the notation an is used to denote the limit of the ratio of df to dp, it would not

dt
be quite accurate to say that the condition of stability requires that (;; > 0. This
»
TRANS. CONNECTICUT ACAD., VOL. II. 21 May, 1873.
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transmission of heat, the pressure should increase as the volume di-
minishes, i. e., that [dp:dv], < 0. Through the point in question,
A (fig. 13), let there be drawn the isometric vv' and the isentropic
nn', and let the positive sides of these lines be indicated as in the

figure. The conditions (%) > 0 and [dp: dv], < 0 require that the
v

pressure at v and at # shall be greater than at A, and hence, that the
isopiestic shall fall as pp' in the
figure, and have its positive side
turned as indicated. Again, the
conditions

(a‘,—ig-)"<o and [d¢: d7] ;> 0

require that the temperature at
n and at p shall be greater than
at A, and hence, that the iso-
thermal shall fall as tt' and have
its positive side turned as indi-
cated. As it i8 not necessary that

(%) > 0, the lines pp’ and tt' may be tangent to one another at A,
p

provided that they cross one another, so as to have the same order
about the point A as is represented in the figure; i. e., they may have
a contact of the second (or any even) order.* But the condition that

(Zl) > 0, and hence (ih—) < 0, does not allow pp’ to be tangent to
ar’ dv n

vv', nor tt' to »).

Fig. 13.

It (Z—’;) be still positive, but the equilibrium be neutral, it will be
v

possible for the body to change its state without change either of
temperature or of pressure; i. e., the isothermal and isopiestic will be

condition requires that the ratio of the differences of temperature and entropy between
the point in question and any other infinitely near to it and upon the same isopiestic
should be positive. It is not necessary that the limit of this ratio should be positive.

* An example of this is doubtless to be found at the critical point of a fluid. See
Dr. Andrews ‘ On the continuity of the gaseous and liquid states of matter.” Phil
Trans., vol. 159, p. 575.

If the isothermal and isopiestic have a simple tangency at A, on one side of that
point they will have such directions as will express an unstable equilibrium. A line
drawn through all such points in the diagram will form a boundary to the possible part
of the diagram. It may be that the part of the diagram of a fluid, which represents
the superheated liquid state, is bounded on one side by such a line,
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identical. The lines will fall as in figure 13, except that the iso-
thermal and isopiestic will be superposed.

In like manner, if (g%) < 0, it may be proved that the lines will

v

fall as in figure 14 for stable equilibrium, and in the same way for
neutral equilibrium, except that pp’ and tt' will be superposed.*

The case that (dﬁ) = 0 includes a Fig. 14.

dn/y

considerable number of conceivable
cases, which would require to be dis-
tinguished. It will be sutficient to men-
tion those most likely to occur.

In a field of stable equilibrium it may

occur that («_lp_) =0 along a line, on
dn/y

one side of which (di) > 0,and on the
dn/,

other side (%) < 0. At any point in such a line the isopiestics will
v

be tangent to the isometrics and the isothermals to the isentropics.

(See, however, note on page 39.)

In a field of neutral equilibrium representing a mixture of two
different states of the substance, where the isothermals and isopiestics
are idéntical, a line may occur which has the threefold character of
an isometric, an isothermal and an isopiestic. For such a line

dp) _ dp . . . . .
( anl,= o. If (d_")v has opposite signs on opposite sides of this

line, it will be an isothermal of maximum or minimum temperature.t

The case in which the body is partly solid, partly liquid and
partly vapor has already been sufficiently discussed. (See page 333).

* When it is said that the arrangement of the lines in the diagram must be like that
in figure 13 or in figure 14, it is not meant to exclude the case in which the figure (13
or 14) must be turned over, in order to correspond with the diagram. In the case,
however, of diagrams formed by any of the methods mentioned in this article, if the
directions of the axes be such as we have assumed, the agreement with figure 13 will
be without inversion, and the agreement with figure 14 will also be without inversion for
volume-entropy diagrams, but with snversion for volume-pressure or entropy-tempera-
ture diagrams, or those in which z = log v and y = log p, or z = n and y = log ¢.

+ As some liquids expand and others contract in solidifying, it is possible that there
are some which will solidify either with expansion, or without change of volume, or
with contraction, according to the pressure. If any such there are, they afford exam-
ples of the case mentioned above.
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The arrangement of the isometric, isopiestic, etc., as given in figure
13, will indicate directly the sign of any differential co-efficient of the

dw

(and ¢, if the isodynamic be added in the figure). The value of such
a differential co-efticient will be indicated, when the rates of increase
of v, p, etc., are indicated, as by isometrics, etc., drawn both for
the values of v, etc., at the point A, and for values differing from these

form (d_u) , where %, w and z may be any of the quantities v, p, ¢, »
4

by a small quantity. For example, the value of (%) will be indi-
"

cated by the ratio of the segments intercepted upon an isentropic by
a pair of isometrics and a pair of isopiestics, of which the differences
of volume and pressure have the same numerical value. The case in
which W or H appears in the numerator or denominator instead of a
function of the state of the body, can be reduced to the preceding by
the substitution of pdv for d W, or that of tdn for dH.

In the foregoing discussion, the equations which express the funda-
mental principles of thermodynamics in an analytical form have been
assumed, and the aim has only been to show how the same relations
may be expressed geometrically. It would, however, be easy, starting
from the first and second laws of thermodynamics as usually enunciated,
to arrive at the same results without the aid of analytical formule,—to
arrive, for example, at the conception of energy, of entropy, of abso.-
lute temperature, in the construction of the diagram without the ana-
lytical definitions of these quantities, and to obtain the various prop-
erties of the diagram without the analytical expression of the thermo-
dynamic properties which they involve. Such a course would have
been better fitted to show the independence and sufficiency of a graphi-
cal method, but perhaps less suitable for an examination of the com-
parative advantages or disadvantages of different graphical methods.

The possibility of treating the thermedynamics of fluids by such
graphical methods as have been described evidently arises from the
fact that the state of the body considered, like the position of a point
in a plane, is capable of two and only two independent variations.
It is, perhaps, worthy of notice, that when the diagram is only used
to demonstrate or illustrate general theorems, it is not necessary,
although it may be convenient, to assume any particular method of
forming the diagram; it is enough to suppose the different states of
the hody to be represented continuously by points upon a sheet.



XIV. A Meruonp oF GEOMETRICAL REPRESENTATION OF THE
THERMODYNAMIC PROPERTIES OF SUBSTANCES BY MEANS OF SUR-
FACES. By J. WiLLarp Ginss.

Tue leading thermodynamie properties of a fluid are determined
by the relations which exist between the volume, pressure, tempera-
ture, energy, and entropy of a given mass of the fluid in a state of
thermodynamic equilibrium.  The same is true of a solid in regard to
those properties which it exhibits in processes in which the pres-
sure is the same in every direction about any point of the solid.
But all the relations existing between these five quantities for any
substance (three independent relations) may be deduced from the
single relation cxisting for that substance between the volume, energy,
and entropy.  This may be done by means of the general equation,

de=tdn—pdv, (1)*
. de .
that is, p=- ((—h',)”a (2)
de
t= (J",)v, (3)

where v, p, t, & and n denote severally the volume, pressure, absolute
temperature, energy, and entropy of the body considered. The sub-
script letter after the differential cocfficient indicates the quantity
which is supposed constant in the differentiation,
«
Representation of Volume, Entropy, FEnergy, Pressure, and Tem-
perdature,

Now the relation hetween the volume, entropy, and energy may
be represented by a surface, most simply if the rectangular co-ordin-
ates of the various points of the surface are made equal to the vol-
ume, entropy, and cnergy of the body in its various states. It may
be interesting to examine the properties of such a surface, which we
will eall the thermodynamice surface of the body for which it is
formed.t

* For the demonstration of this equation, and in regard to the units used in the
measnrement of the quantities, the reader is referred to page 310 of this volume.

% Professor J. Thomson has proposed and used a surface in which the co-ordinates
are proportional to the volume, pressure, and temperature of the body. (Proc. Roy.
Qoe.. Nov. 16, 1871, vol. xx, p. 1; and Phil. Mag.. vol. xliii, p. 227). It is evident,
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To fix our ideas, let the axes of v, 7, and & have the directions usu-
ally given to the axes of X, Y, and Z (v increasing to the right, »
forward, and ¢ upward). Then the pressure and temperature of the
state represented by any point of the surface are equal to the tan-
gents of the inclinations of the surface to the horizon at that point, as
measured in planes perpendicular to the axes of » and of v respect-
ively. (Eqs. 2 and 3). It must be observed, however, that in the
first case the angle of inclination is measured upward from the direc-
tion of decreasing v, and in the second, upward from the direction of
increasing n. Hence, the tangent plane at any point indicates the
temperature and pressure of the state represented. It will be conve-
nient to speak of a plane as representing a certain pressure and tem-
perature, when the tangents of its inclinations to the horizon, meas-
ured as above, are equal to that pressure and temperature.

Before proceeding farther, it may be worth while to distinguish
between what is essential and what is arbitrary in a surface thus
formed. The position of the plane v=0 in the surface is evidently
fixed, but the position of the planes #=0, é=0 is arbitrary, provided
the direction of the axes of » and ¢ be not altered. This results from
the nature of the definitions of entropy and energy, which involve
each an arbitrary constant. As we may make =0 and é=0 for any
state of the body which we may choose, we may place the origin of
co-ordinates at any point in the plane »¥=0. Again, it is evident from
the form of equation (1) that whatever changes we may make in the
units in which volume, entropy, and energy are measured, it will
always be possible to make such changes in the units of temperature
and pressure, that the equation will hold true in its present form,
without the introduction of constants. It is easy to see how a change
of the units of volume, entropy, and energy would affect the surface,
The projections parallel to any one of the axes of distances between
points of the surface would be changed in the ratio inverse to that in
which the corresponding unit had been changed. These considera-
tions enable us to foresee to a certain extent the nature of the gene-
ral properties of the surface which we are to investigate. They must
be such, namely, as shall not be affected by any of the changes men-
tioned above. For example, we may find properties which concern

however, that the relation between the volume, pressure, and temperature affords a
less complete knowledge of the properties of the body than the relation between the
volume, entropy, and energy. For, while the former relation is entirely determined by
the latter, and can be derived from it by diﬁfarentiation, the latter relation is by no
means determined by the former.
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the plane v=0 (as that the whole surface must necessarily fall on the
positive side of this plane), but we must not expect to find properties
which concern the planes »=0, or &=0, in distinction from others
parallel to them. It may be added that, as the volume, entropy, and
energy of a body are equal to the sums of the volumes, entropies, and
energies of its parts, if the surface should be coustructed for bodies
differing in quantity but not in kind of matter, the different surfaces
thus formed would be similar to one another, their linear dimensions
being proportional to the quantities of matter.

Nature of that Part of the Surfuce which represents States which are
not Homogeneous.

This mode of representation of the volume, entropy, energy, pres-
sure, and temperature of a body will apply as well to the case in
which different portions of the body are in different states (supposing
always that the whole is in a state of thermodynamic equilibrium}, as
to that in which the body is uniform in state throughout. For the
body taken as a whole has a definite volume, entropy, and energy, as
well as pressure and temperature, and the validity of the general
equation (1) is independent of the uniformity or diversity in respect
to state of the different portions of the body.* It is evident, there-
fore, that the thermodynamic surface, for many substances at least,

# It is, however, supposed in this equation that the variations in the state of the
body, to which dv, dz, and de refer, are such as may be produced reversibly by expan-
gion and compression or by addition and subtraction of heat. Hence, when the body
consists of parts in different states, it is necessary that these states should be such as
can pass either into the other without sensible change of pressure or temperature.
Otherwise, it would be necessary to suppose in the differential equation (1) that the
proportion in which the body is divided into the different states remains constant.
But such a limitation would render the equation as applied to a compound of differ-
ent states valueless for our present purpose. If, however, we leave out of account
the cases in which we regard the statvs as chemically different from one another,
which lie beyond the scope of this paper, experience justifies us in assuming the above
condition (that either of the two states existing in contact can pass into the other with-
out sensible change of the pressure or temperature), as at least approximately true,
when one of the states is fluid. But if both are solid, the necessary mobility of the
parts is wanting. It must therefore be understood, that the following discussion of
the compound states is not intended to apply without limitation to the exceptional
cases, where we have two different solid states of the same substance at the same pres-
sure and temperature. It may be added that the thermodynamic equilibrium which
subsists between two such solid states of the same substance differs from that which
subsists when one of the states is fluid, very much as in statics an equilibrium which
is maintained by friction differs from that of a frictionless machine in which the
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can be divided into two parts, of which one represents the homoge-
neous states, the other those which are not so. We shall see that,
when the former part of the surface is given, the latter can readily be
formed, as indeed we might expect. We may therefore call the for-
mer part the primitive surface, and the latter the derived surface.

To ascertain the nature of the derived surface and its relations to
the primitive surface sufficiently to construct it when the latter is
given, it is only necessary to use the principle that the volume,
entropy, and energy of the whole body are equal to the sums of the
volumes, entropies, and energics respectively of the parts, while the
pressure and temperature of the whole are the same as those of each
of the parts. Let us commence with the case in which the body is in
part solid, in part liquid, and in part vapor. The position of the
point determined by the volume, entropy, and energy of such a com-
pound will be that of the center of gravity of masses proportioned
to the masses of solid, liquid, and vapor placed at the three points of
the primitive surface which represent respectively the states of com-
plete solidity, complete liquidity, and complete vaporization, cach at
the temperature and pressure of the compound. Hence, the part of
the surface which represents a compound of solid, liquid, and vapor is
a plane triangle, having its vertices at the points mentioned. The
fact that the surface is here plane indicates that the pressure and tem-
perature are hcre constant, the inclination of the plane indicating the
value of these quantities. Moreover, as these values are the same for
the compound as for the three different homogeneous states corres-
ponding to its different portions, the plane of the triangle is tangent
at each of its vertices to the primitive surface, viz: at one vertex to
that part of the primitive surface which represents solid, at another
to the part representing liquid, and at the third to the part represent-
ing vapor.

When the body consists of a compound of two different homogene-
ous statex, the point which represents the compound state will be at

active forces are 8o balanced, that the slightest change of force will produce motion
in either direction.

Another limitation is rendered necesrary by the fact that in the following discus-
sion the magnitude and form of the bounding and dividing surfaces are left out of
account; go that the results are in general strictly valid only in cases in which the
influence of these particulars may be neglected. When, therefore, two states of the
substance are spoken of as in contact, it must be understood that the surface dividing
them is plane. To consider the subject in a more general form, it would be necessary
to introduce considerations which belong to the theories of capillarity and crystalliza-
tion.
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the center of gravity of masses proportioned to the masses of the
parts of the body in the two different states and placed at the points
of the primitive surface which represent these two states (i e., which
represent the volume, entropy, and energy of the body, if its whole
mass were supposed successively in the two homogeneous states which
occur in its parts). It will therefore be found upon the straight line
which unites these two points. As the pressure and temperature are
evidently constant for this line, a single plane can be tangent to the
derived surface throughout this line and at each end of the line tan-
gent to the primitive surface.* If we now imagine the temperature

* It is here shown that, if two different states of the substance are such that they
can exist permanently in contact with each other, the points representing these states
in the thermodynamic surface have a common tangent plane. We shall see hereafter
that the converse of this is true,—that, if two points in the thermodynamic surface
have a common tangent plane, the states represented are such as can permanently
exist in contact; and we shall also see what determines the direction of the discon-
tinuous change which occurs when two different states of the same pressure and tem-
perature, for which the condition of a common tangent plane is not satisfied, are
brought into contact.

It is easy to express this condition analytically. Resolving it into the conditions,
that the tangent planes shall be parallel, and that they shall cut the axis of ¢ at the
same point, we have the equations

pf= pll’ (G)
r=1, ®
&— ‘1’71 + plvl__- e — t"’[” + pllvll, (7)

where the letters which refer to the different states are distinguished by accents. If
there are three states which can exist in contact, we must have for these states,
plz pll= pfll,
v=2t'=t",
el_ tl’,l +plvl= €ll_ 'II”II_'_]'II'}II: elll__ tlll'/ll +ptllvlff.

These results are interesting, as they show us how we might foresee whether two
given states of a substance of the same pressure and temperature, can or cannot exist
in contact. It is indeed true, that the values of € and 7 cannot like those of v, p, and
t be ascertained by mere measurements upon the substance while in the two states in
question. It is necessary, in order to find the value of ¢”— ¢’ or #/— 7/, to carry out
measurements upon a process by which the substance is brought from one state to the
other, but this need not be by a process in which the two given states shall be found sn con-
tact, and in some cases at least it may he done by processes in which the body remains
always homogeneous in state. For we know by the experiments of Dr. Andrews
(Phil. Trane., vol. 159, p. 575), that carbonic acid may be carried from any of the
states which we usually call liquid to any of those which we usually call gas, without
losing its homogeneity. Now, if we had so carried it from a state of liquidity to a
state of gas of the same pressure and temperature, making the proper measurements
in the process, we should be able to foretell what would occur if these two states of
the substance should be brought together,—whether evaporation would take place, or
condensation, or whether they would remain unchanged in contact,—although we had
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and pressure of the compound to vary, the two points of the primi-
tive surface, the line in the derived surface uniting them, and the tan-
gent plane will change their positions, maintaining the aforesaid rela-
tions. We may conceive of the motion of the tangent plane as pro-
duced by rolling upon the primitive surface, while tangent to it in
two points, and as it is also tangent to the derived surface in the lines
joining these points, it is evident that the latter is a developable and
forms a part of the envelop of the successive positions of the rolling
plane. We shall see hereafter that the form of the primitive sur-
face is such that the double tangent plane does not cut it, so that this
rolling is physically possible.

From these relations may be deduced by simple geometrical consid-
erations, oue of the principal propositions in regard to such com-
pounds. Let the tangent plane touch the primitive surface at the
two points L and V (fig. 1), which, to fix our ideas, we may suppose
to represent liquid and vapor; let planes pass through these points
perpendicular to the axes of v and # respect-
ively, intersecting in the line AB, which will be A
parallel to the axis of & Let the tangent plane ,
cut this line at A, and let LB and VC be drawn
at right angles to AB and parallel to the axes of
7 and v. Now the pressure and temperature

represented by the tangent plane are evidently

AC - .
ov and BT. respéctively, and if we suppose the

Fig. 1.

wa

L

never seen the phenomenon of the coexistence of these two states, or of any other two
states of this substance.

Equation (y) may be put in a form in which its validity is at once manifest for two
states which can pass either into the other at a constant pressure and temperature.
If we put p” and # for the equivalent p”” and ¢, tho equation may be written

e’ — =¥ (’//_ ’,r)_ pl (v/r_ vr).
Here the left hand member of the equation represents the difference of energy in the
two states. and the two terms on the right represent severally the heat received and
the work done when the body passes from one state to the other. The equation may
also be derived at once from tho general equation (1) by integration.

It is well known that when the two states being both tluid meet in a curved surface,

instead of (a) we have p—p'= T(% + .lp),

where r and 1’ are the radii of the principal curvatures of the surface of contact at any
point (positive, if the concavity is toward the mass to which p” refers), and T is what
is called the superficial tension. Equation (3), however, holds good for such cases, and
it might easily be proved that the same is true of equation (}). In other words, the
tangent planes for the points in the thermodynamic surface representing the two states
cut the plane v=0 in the same line.

TRANS. CONNECTICUT ACADEMY, Vol IL 33 DEkc., 1873.
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tangent plane in rolling upon the primitive surface to turn about its
instantaneous axis LV an infinitely small angle, so as to meet AB in

\’, dp and dt will be equal to AN and \I“} respectively.  Therefore,

CvV
d p BL /' — );'
TOVT Ty

where v’ and »' denote the volume and entropy for the point I, and
v and n" those for the point V. If we substitute for »'—y its

. r . Lo
equivalent i (r denoting the heat of vaporization), we have the equa-

s L. d r
tion in its usual form, -d%)» ==y

Properties of the Surfuce relating to Stubility of Thermodynamic
Equilibrivn,

We will now turn our attention to the geometrical properties of
the surface, which indicate whether the thermodynamic equilibrium
of the body is stable, unstable, or neutral. This will involve the con-
sideration, to a certain extent, of the nature of the processes which
take place when equilibrium does not subsist. We will suppose the
body placed in a medium of constant pressure and temperature; but
as, when the pressure or temperature of the body at its surface dif-
fers from that of the medium, the immediate contact of the two is
hardly consistent with the continuance of the initial pressure and
temperature of the medium, both of which we desire to suppose con-
stant, we will suppose the body separated from the medium by an
envelop which will yield to the smallest differences of pressure
between the two, but which can only yield very gradually, and
which is also a very poor conductor of heat. It will be convenient
and allowable for the purposes of reasoning to limit its properties to
those mentioned, and to suppose that it does not occupy any space,
or absorb any heat except what it transmits, i. e., to make its volume
and its specific heat 0. DBy the intervention of such an ecvelop, we
may suppose the action of the body upon the medium to be so
retarded as not sensibly to disturb the uniformity of pressure and
temperatuare in the latter.

When the body is not in a state of thermodynamic equilibrium, its
state is not one of those which are represented by our surface. The
body, however, as a whole has a certain volume, entropy, and energy,
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which are equal to the sums of the volumes, etc., of its parts.* If]
then, we suppose points endowed with mass proportional to the
masses of the various parts of the body, which are in different ther-
modynamic states, placed in the positions determined by the states
and motions of these parts, (i. e., o placed that their co-ordinates are
equal to the volume, entropy, and energy of the whole body supposed
successively in the same states and endowed with the same velocities
as the different parts,) the center of gravity of such points thus
placed will evidently represent by its co-ordinates the volume, entropy,
and energy of the whole body. 1f all parts of the body are at rest,
the point representing its volume, entropy, and energy will be the
center of gravity of a number of points upon the primitive surface.
The effect of motion in the parts of the body will be to move the
corresponding points parallel to the axis of ¢ a distance equal in
each case to the nis vina of the whole body, if endowed with the
velocity of the part represented ;—the center of gravity of points
thus determined will give the volume, entropy, and energy of the
whole body.

Now let us suppose that the body having the initial volume,
entropy, and euergy, v',1/, and ¢, is placed (enclosed in an envelop as
aforesaid) in a medium having the constant pressure P and tempera-
ture 7, and by the action of the medium and the interaction of its
own parts comes to a final state of rest in which its volume, ete., are
v, 9", € ;—we wish to find a relation between these quantities. If
we regard, as we may, the medium as a very large body, so that
imparting heat to it or compressing it within moderate limits will
have no appreciable effect upon its pressure and temperature, and
write V, II, and E, for its volume, entropy, and energy, equation (1)

becomes dE=TdI[—PdV,

which we may integrate regarding P and 7'as constants, obtaining
E'~E=TH'—TH - PV"+ PV, (@)

where £'; E", etc., refer to the initial and final states of the medium.

Again, as the sum of the energics of the body and the surrounding

medium may become less, but cannot become greater (this arises from
the nature of the ¢nvelop supposed), we have

B S ey B (3)

* As the discussion is to apply to cases in which the parts of the body are in
(sensible) motion, it is necessary to define the sense in which the word energy is to be
used. We will use the word us including the vis viva of sensible motions.
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Again, as the sum of the entropies may increase but cannot diminish

n'+H" z '+ IT. (¢)
Lastly, it is evident that

v+ V"= 04V (d)
These four equations may be arranged with slight changes as follows :

—E'"4+TH"—PV"==E'4+TH' — PV’
8“+E”§ E’+E’
Ty - TH" S — Ty~ T
Po'4+PV"="Pv+PV'.

By addition we have

&'— TI]"+PU”<

=& =Ty + Pv. (e)
Now the two members of this equation evidently denote the vertical
distances of the points (0", »"', ¢”) and (v', »/, ¢’) above the plane pass-
ing through the origin and representing the pressure P and tempera-
ture 70 And the cquation expresses that the ultimate distance is less
or at most equal to the initial. It is evidently immaterial, whether
the distances be measured vertically or normally, or that the fixed
plane representing £’ and 7" should pass through the origin; but dis-
tances must be considered negative when measured from a point
below the plane.

It is evident that the sign of inequality holds in (¢) if it holds in
either () or (c), therefore, it holds in (e) if there are any differences
of pressure or temperature between the different parts of the body
or between the body and the medium, or if any part of the body has
sensible motion. (In the latter case, there would be an increase of
entropy due to the conversion of this motion into heat). But even if
the body is initially without sensible motion and has throughout the
same pressure and temperature as the medium, the sign < will still
hold if different parts of the body are in states represented by points
in the thermodynamic surface at different distances from the fixed
plane representing I and 70 For it certainly holds if such initial
circumstances are followed by differences of pressure or temperature,
or by sensible velocities. Again, the sign of inequality would neces-
sarily hold if one part of the body should pass, without producing
changes of pressure or temperature or sensible velocities, into the
state of another part represented by a point not at the same distance
from the fixed plane representing 7”and 7. But these are the only
snppositions possible in the case, unless we suppose that equilibrium
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subsists, which would require that the points in question should have
a common tangent plane (page 386), whereas by supposition the planes
tangent at the different points are parallel but not identical.

The results of the preceding paragraph may be summed up as fol-
lows:—Unless the body is initially without sensible motion, and its
state, if homogeneous, is such as is represented by a point in the
primitive surface where the tangent plane is parallel to the fixed plane
representing P and 7, or, if the body is not homogeneous in state,
unless the points in the primitive surface representing the states of
its parts have a common tangent plane parallel to the fixed plane
representing P and 7, such changes will ensue that the distance
of the point representing the volume, entropy, and energy of the
body from that fixed plane will be diminished (distances being con-
sidered negative if measured from points beneath the plane). Let
us apply this result to the question of the stability of the body when
surrounded, as supposed, by a medium of constant temperature and
pressure.

The state of the body in equilibrium will be represented by a point
in the thermodynamic surface, and as the pressure and temperature of
the body are the same as those of the surrounding medium, we may
take the tangent plane at that point as the fixed plane representing
P and 7. If the body is not homogeneons in state, although in equi-
librium, we may, for the purposes of this discussion of stability,
either take a point in the derived surface as representing its state, or
we may take the points in the primitive surface which represent the
states of the different parts of the body. These points, as we have
gseen (page 386), have a common tangent plane, which is identical with
the tangent plane for the point in the derived surface.

Now, if the form of the surface be such that it falls above the tan-
gent plane except at the single point of contact, the equilibrium is
necessarily stable; for if the condition of the body be slightly altered,
either by imparting sensible motion to any part of the body, or by
slightly changing the state of any part, or by bringing any small
part into any other thermodynamic state whatever, or in all of these
ways, the point representing the volume, entropy, and energy of the
whole body will then occupy a position ahove the original tangent
plane, and the proposition above enunciated shows that processes
will ensue which will diminish the distance of this point from that
plane, and that such processes cannot cease until the body is brought
back into its original condition, when they will necessarily cease on
account of the form supposed of the surface.
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On the other hand, if the surface have such a form that any part
of it falls below the fixed tangent plane, the equilibrium will be
unstable. For it will evidently be possible by a slight change in the
original condition of the body (that of equilibrium with the surround-
ing medimmn and represented by the point or points of contact) to
bring the point representing the volume, entropy, and energy of the
body into a position beluw the fixed tangent plane, in which case we
see by the above proposition that processes will occur which will
carry the point still farther from the plane, and that such processes
cannot cease until all the body has passed into some state entirely
different from its original state.

It remains to consider the case in which the surface, although it
does not anywhere fall below the fixed tangent plane, nevertheless
meets the plane in more than one point. The equilibrium in this
case, as we might anticipate from its intermediate character between
the cascs already considered, is neutral. For if any part of the
body be changed from its original state into that represented by
another point in the thermodynamic surfuce lying in the same tan-
gent plane, equilibrium will still subsist. For the supposition in
regard to the form of the surface implies that uniformity in tempera-
ture and pressure still subsists, nor can the body have any necessary
tendency to pass entircly into the second state or to return into the
original state, for a change of the values of 7'and P less than any
assignable quantity would evidently be suflicient to reverse such a
tendency if any such existed, as either point at will could by such an
infinitesimal variation of 77 and P be made the nearer to the plane
representing 7" and P.

It must be observed that in the case where the thermodynamic
surface at a certain point is concave upward in both its principal
curvatures, but somewhere falls below the tangent plane drawn
through that point, the equilibrium although unstable in regard to
discontinuous changes of state is stable in regard to continuous
changes, as appears on restricting the test of stability to the vicinity
of the point in question ; that is, if we suppose a body to be in a state
represented by such a point, although the equilibrium would show
itself unstable it we should introduce into the body a small portion
of the same substance in one of the states represented by points
below the tangent plane, yet if the conditions necessary for such a
discontinuous change are not present, the equilibrium would be sta-
ble. A familiar example of this is afforded by liquid water when
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heated at any pressure above the temperature of boiling water at
that pressure.*

Leading Features of the Thermodynamic Surface for Substances
which take the forms of Solid, Liquid and Vapor. '

We are now prepared to form an idea of the general character of
the primitive and derived surfaces and their mutual relations for a
substance which takes the forms of solid, liquid, and vapor. The prim-
itive surface will have a triple tangent plane touching it at the three
points which represent the three states which can exist in contact.
Except at these three points, the primitive surface falls entirely above
the tangent plane. That part of the plane which forms a triangle
having its vertices at the three points of coutact, is the derived sur-
face which represents a compound of the three states of the sub-
stance. We may now suppose the plane to roll on the under side of
the surface, continuing to touch it in two points without cutting it.
This it may do in three ways, viz: it may commence by turning about
any one of the sides of the triangle aforesaid. Any pair of points
which the plane touches at once represent states which can exist per-
manently in contact. In this way six lines are traced upon the sur-
face. These lines have in general a common property, that a tangent
plane at any point in them will also touch the surface in another
point. We must say in general, for, as we shall see hereafter, this
statement does not hold good for the critical point. A tangent plane
at any point of the surface outside of these lines has the surface en-
tirely above it, except the single point of contact. A tangent plane
at any point of the primitive surface within these lines will cut the
surface. These lines, therefore, taken together may be called the
limit of absolute stability, and the surface outside of them, the swr
Jace of absolute stability. That part of the envelop of the rolling
plane, which lies between the pair of lines which the plane traces on
the surface, is a part of the derived surface, and represents a mixture
of two states of the substance.

* If we wish to express in a single equation the necessary and sufficient condition
of thermodynamic equilibrium for a substance when surrounded by a medium of con-
stant pressure P and temperature 7, this equation may be written

(e —Ty + Pv)=0,
when 4 refers to the variation produced by any variations in the state of the parts of
the body, and (when different parts of the body are in different states) in the propor-
tion in which the body is divided between the different states. The condition of atable
equilibrium is that the value of the expression in the parenthesis shall be a minimum.
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The relations of these lines and surfaces are roughly represented in
horizontal projection®* in figure 2, in which the full lines represent
lines on the primitive surface, and the dotted lines those on the
derived surface. S, L, and V are the points which have a common
tangent plane and represent the states of solid, liquid, and vapor

Fig. 2.
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which can exist in contact. The plane triangle SLV is the derived
surface representing compounds of these states. LL' and VV' are
the pair of lines traced by the rolling double tangent plane, between
which lies the derived surface representing compounds of liquid and
vapor. VV" and 88" are another such pair, between which lies the
derived surface representing compounds of vapor and solid. SS'”
and LL/” are the third pair, between which lies the derived surface
representing a compound of rolid and liquid. IL"LL’, V'VV" and
§"SS’"" are the houndaries of the surfaces which represent respectively
the absolutely stable states of liquid, vapor, and solid.

The geometrical expression of the results which Dr. Andrews
(Phil. Trans., vol. 159, p. 575) has obtained by his experiments with
carbonic acid is that, in the case of this substance at least, the derived
surface which represents a compound of liquid and vapor is termina-
ted as follows: as the tangent plane rolls upon the primitive surface,
the two pumts of contact .npproach one another and finally fall

* A honzontnl projection of the thermod\ namic surfnce is identical with the dia-
gram described on pages 330-338 of this volume, under the name of the volume-

entropy diagram.
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together. The rolling of the double tangent plane necessarily comes
to an end. The point where the two points of contact fall together is
the critical point. Before considering farther the geometrical char-
acteristics of this point and their physical significance, it will be con-
venient to investigate the nature of the primitive surface which lies
between the lines which form the limit of absolute stability.

Between two points of the primitive surface which have a common
tangent plane, as those represented by L’ and V' in figure 2, if there
is no gap in the primitive surface, there must evidently be a region
where the surface is concave toward the tangent plane in one of its
principal curvatures at least, and therefore represents states of unsta-
ble equilibrium in respect to continuous as well as discontinuous
changes (sce page 392).* If we draw a line upon the primitive sur-
face, dividing it into parts which represent respectively stable and
unstable equilibrium, in respect to continnous changes, i. e., dividing -
the surface which is concave upward in both its principal curvatures
from that which is concave downward in one or both, this line, which
may be called the limit of essential instability, must have a form
somewhat like that represented by #'Cuvv'ss’ in figure 2. It touches
the limit of absolute stability at the critical point C. For we may
take a pair of points in LC and VC having a common tangent plane
as near to C as we choose, and the line joining them upon the primi-
tive surface made by a plane section perpendicular to the tangent
plane, will pass through an area of instability.

The geometrical properties of the critical point in our surface may
be made more clear by supposing the lines of curvature drawn upon
the surtace for one of the principal curvatures, that one, namely,
which has different signs upon difterent sides of the limit of essential
instability. The lines of curvature which meet this line will in gen-
eral cross it. At any point where they do so, as the sign of their
curvature changes, they evidently cut a plane tangent to the surface,
and therefore the surface itself cuts the tangent plane. But where
oue of these lines of curvature touches the limit of essential instabil-
ity without crossing it, so that its curvature remains always positive
(curvatures being considered positive when the concavity is on the
upper side of the surface), the surface evidently does not cut the tan-
gent plane, but has a contact of the third order with it in the section
of least curvature. The critical point, thercfore, must be a point

* This is the same result as that obtained by Professor J. Thomson in connection
with the surface referred to in the note on page 382.
TRANS. CONNECTICUT ACADEMY, Vol. I 34 DEc., 18173,
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where the line of that principal curvature which changes its sign
is tangent to the line which separates positive from negative curv-
atures.

From the last paragraphs we may derive the following physical
property of the critical state:—.\Although this is a limiting state
between those of stability and those of instability in respect to con-
tinuous changes, and although such limiting states dre in general
unstable in respect to such changes, yet the critical state is stable in
regard to them. A similar proposition ix true in regard to absolute
stability, i. e., if we disregard the distinction between continuous and
discontinuous changes, viz: that although the critical state is a limit-
ing state between those of stability and instability, and although the
equilibrium of such limiting states is in general neutral (when we sup-
pose the substance surrounded by a medium of constant pressure and
temperature), yet the critical point is stable,

From what has been said of the curvature of the primitive surface
at the critical point, it is evident, that if we take a point in this sur-
face infinitely near to the critical point, and such that the tangent
planes for these two points shall interseet in 2 line perpendicular to
the section of least curvature at the eritical point, the angle made by
the two tangent planes will be an’ infinitesimal of the same order as
the cube of the distance of these points. Hence, at the critical point

@)=0 (@=0 (=0 (=0

dzp) (13])) _ a2t ) d’t)
— 1 = —) = —) =0 —-—] =
((Iu’ ¢t % (d:/2 ¢ ® (dw" p ((l//’ p o

and if we imagine the isothermal and isopiestic (line of constant pres-
sure) drawn for the eritical point upon the primitive surface, these
lines will have a contact of the third order.

Now the elasticity of the substance at constant temperature and
its specitic heat at constant pressure may be defined by the equations,

_ dp) _ (dr/) .
¢=- ”(;{E' e =t p’

therefore at the critical point

e=0, =0,

de de a a3
(% )z =0 ((l;)t =0 ('«7& )p =0 (d’l)p— 0

The last four equations would also hold good if p were substituted
for ¢, and vice versa.
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We have scen that in the case of such substances as ean pass con-
tinuously from the state of liquid to that of vapor, unless the primi-
tive surface is abruptly terminated and that in a line which passes
through the critical point, a part of it must represent states which are
essentially unstable (i. e., unstable in regard to continuous changes,)
and therefore caunot exist permanently unless in very limited spaces.
It does not necessarily follow that such states cannot be realized at
all. It appears quite probable, that a substance initially in the criti-
cal state may be allowed to expand so rapidly, that, the time being
too short for appreciable conduction of heat, it will pass into some of
these states of essential instability. No other result is possible on
the supposition of no transmission of heat, which requires that the
points representing the states of all the parte of the body shall be
confined to the isentropic (adiabatic) line of the critical point upon
the primitive surface. It will be observed that there is no insta-
bility in regard to changes of state thus limited, for this line (the
plane section of the primitive surface perpendicular to the axis of 7)
is concave upward, as is evident from the fact that the primitive sur-
face lies entirely above the tangent plane for the critical point.

We may suppose waves of compression and expansion to be propa-
gated in a substance initially in the critical state. The velocity of

. . Ldpy . [ d%e
propagation will depend upon the value of (df; 4)”, i e, of —( W),f
Now for a wave of compression the value of these expressions is
determined by the form of the isentropic on the primitive surface.
If a wave of expansion has the same velocity approximately as one
of compression, it follows that the substance when expanded under
the circumstances remains in a state represcented by the primitive sur-
face, which involves the realization of states of essential instability.

The value of (’%)0 in the derived surface is, it will be observed,
totally different from its value in the primitive surface, as the curva-
ture of these surfaces at the eritical point is different.

The case is different in regard to the part of the surface between
the limit of absolute stability aud the limit of essential instability.
Here, we have experimental knowledge of some of the states repre-
sented. In water, for example, it is well known that liquid states can
be realized beyond the limit of absolute stability,—both beyond the
part of the limit where vaporization usually commences (LL’ in figure
2), and beyond the part where congelation usually commences (LL'),
That vapor may also exist beyond the limit of absolute stahility, i. e.,
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that it may exist at a given temperature at pressures greater than
that of equilibrium between the vapor and its liqnid meeting in a
plane surface at that temperature, the considerations adduced by Sir
W. Thomson in his paper “On the equilibrinm of a vapor at the
curved surface of a liquid ” (Proc. Roy. Soc. Ed., Session 18691870,
and Phil. Mag., vol. xlii, p. 448), leave no room for duubt. By exper-
iments like that suggested by Professor J. Thomson in his paper
already referred to, we may be able to carry vapors farther beyond
the limit of absolute stability.* As the resistance to deformation
characteristic of solids evidently tends to prevent a discontinuous
change of state from commencing within them, substances can doubt-
less exist in solid states very far beyond the limit of absolute stability.

The surface of absolute stability, together with the triangle repre-
senting a compound of three states, and the three developable sur-
faces which have been degcribed representing compounds of two
states, forms a continuous sheet, which is everywhere concave upward
except where it is plane, and has only one value of ¢ for any given
values of v and 5. Hence, as ¢ is necessarily positive, it has only one
value of # for any given values of ¢ and ¢. If vaporization can take
place at every temperature except 0, p is everywhere positive, and
the surface has only one value of v for any given values of 7 and &
It forms the surfuce of dissipated energy. If we consider all the
points representing the volume, entropy, and energy of the body in
every possible state, whether of equilibrium or not, these points will

* If we experiment with a fluid which does not wet the vessel which contains it, we
may avoid the necessity of keeping the vessel hotter thun the vapor, in order to pre-
vent condensation. If a glass bulb with a stem of sufficient length be placed vertically
with the open end of the stem in a cup of mercury, the stem containing nothing but
mercury and its vapor, and the bulb nothing but the vapor, the height at which the
mercury rests in the stem, affords a ready and accurate means of determining the pres-
sure of the vapor. If the stem at the top of the column of liquid should be made hot-
ter than the bulb, condensation would take place in the latter, if the liquid were one
which would wet the bulb. But as this is not the case, it appears probable, that if
the experiment were conducted with proper precautions, there would be no condensa-
tion within certain limits in regard to the temperatures. If condensation should take
place, 1t would be easily ohbserved, especially if the bulb were bent over, so that the
mercury condensed could not run back into the stem. So long as condensation does
not occur, it will be easy to give any desired (different) temperatures to the bulb and
the top of the column of mercury in the stem. The temperature of the latter will
determine the pressure of the vapor in the bulb. In this way, it would appear, we
may obtain in the bulb vapor of mercury having pressures greater for the tempera-
tures than those of saturated vapor.
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form a solid figure unbounded in some directions, but bounded in
others by this surface.*

The lines traced upon the primitive surface by the rolling double
tangent plane, which have been called the limit of absolute stability,
do not end at the vertices of the triangle which represents a mixture
of those states. For when the plane is tangent to the primitive sur-
face in these three points, it can commence to roll upon the surface as
a double tangent plane not only by leaving the surface at one of
these points, but also by a rotation in the opposite direction. In the
latter case, however, the lines traced upon the primitive surface by
the points of contact, although a continuation of the lines previously
described, do not form any part of the limit of absolute stability.
And the parts of the envelops of the rolling plane between these lines,
although a continuation of the developable surfaces which have been
described, and representing states of the body, of which some at least
may be realized, are of minor interest, as they form no part of the

* This description of the surface of dissipated energy is intended to apply to a sub-
stance capable of existing as solid, liquid, and vapor, and which presents no anoma-
lies in its thermodynamic properties. But, whatever the form of the primitive sur-
face may be, if we take the parts of it for every point of which the tangent plane does
not cut the primitive surface, together with all the plane and developable derived sur-
face, which can be formed in a manner analogous to those described in the preceding
pages, by fixed and rolling tangent planes which do not cut the primitive surface,—
such surfaces taken together will form a continuous sheet, which, if we reject the
part, if any, for which p < 0, forms the rurface of dissipated energy and has the geo-
metrical properties mentioned above.

There will, however, he no such part in which p < 0, if there is any assignable tem-
perature ¢’ at which the substance Las the properties of a perfect gas except when its
volume is less than a certain quantity »”. For the equations of an isothermal line in
the thermodynamic surface of a perfect gas are (see equations (8) and (E) on pages
321-322 of this volume.)

e=0C
n=alogv+ C'.
The isothermal of ¢ in the thermodynamic surface of the substance in question must
therefore have the same equations in the part in which v exceeds the constant v’.
Now if at any point in this surface p < 0 and ¢ > 0 the equation of the tangent plane
for that point will be
e=mn +nv+ ¢,

where m denotes the temperature and —n the pressure for the point of contact, 80 that
m and n are both positive. Now it is evidently possible to give so large a value to v
in the equations of the isothermal that the point thus determined shall fall below the
tangent plane. Therefore, the tangent plane cuts the primitive surface, and the point
of the thermodynamic surface for which » < 0 cannot belong to the surfaces men-
tioned in the last paragraph as forming a continuous sheet.
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surface of dissipated energy on the one hand, nor have the theoreti-
cal interest of the primitive surface on the other.

Problems relating to the Surface of Dissipated Energy.

The surface of' dissipated energy has an important application to a
certain class of problems which refer to the results which are theo-
retically possible with a given body or system of bodies in a given
initial condition. -

For example, let it be required to find the greatest amount of
mechanical work which can be obtained from a given quantity of a
certain substance in a given initial state, without increasing its total
volume or allowing heat to pass to or from external bodies, except
such as at the close of the processes are left in their initial condition,
This bas been called the available energy of the body. The initial
state of the body is supposed to be such that the body can be made
to pass from it to states of dissipated energy by reversible processes.

If the body is in a state represented by any point of the surface of
dissipated energy, of course no work can be obtained from it under
the given conditions.  But even if the body is in a state of thermody-
namic equilibrium, and therefore in one represented by a point in the
thermodynamic surface, if this point is not in the surface of dissipated
energy, because the equilibrium of the body is unstable in regard to
discontinuous changes, a certain amount of energy will be available
under the conditions for the production of work. Or, if the body is
solid, even if it is uniform in state throughout, its pressure (or ten-
sion) may have different values in different directions, and in this way
it may have a certain available energy. Or, if different parts of the
body are in different states, this will in general be a source of availa-
ble energy. Lastly, we need not exclude the case in which the body
has sensible motion and its vis viva constitutes available energy. In
any case, we must find the initial volume, entropy, and energy of the
body, which will be equal to the sums of the initial volumes, entro-
pies, and cnergies of its parts.  (‘Energy’ is here used to include the
#ig viva of sensible motions). These values of v, 1, and ¢ will deter-
mine the position of a certain point which we will speak of as repre-
senting the initial state,

Now the condition that no heat shall be allowed to pass to exter-
nal bodies, requires that the final entropy of the body shall not be
less than the initial, for it could only be made less by violating this
condition. The problem, therefore, may be reduced to this,—to find
the amount by which the energy of the body may be diminished
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without increasing its volume or diminishing its entropy. This
quantity will be represented geometrically by the distance of the
point representing the initial state from the surface of dissipated en-
ergy measured parallel to the axis of &,

Let us consider a different problem. A certain initial state of the
body is given as before. No work is allowed to be done upon or by
external bodics. Heat is allowed to pass to and from them only on
condition that the algebraic sum of all heat which thus passes shall
be 0. From both these conditions any bodies may be excepted, which
shall be left at the close of the processes in their initial state. More-
over, it is not allowed to increase the volume of the body. It is
required to find the greatest amount by which it is possible under
these conditions to diminish the entropy of an external system.,
This will be, evidently, the amount by which the entropy of the body
can be increased without changing the energy of the body or increas-
ing its volume, which is represented geometrically by the distance of
the point representing the initial state from the surface of dissipated
energy, measured parallel to the axis of 5. This might be called the

capacity for entropy of the body in the given state.®

Thirdly. A certain initial condition of the body is given as hefore
No work is allowed to be done upon or by external bodies, nor any
heat to pass to or from them ; from which conditions bodies may be
excepted, as before, in which no permanent changes are produced.
It is reqmred to find the amount by which the volume of the body

* It may be worth while to call attention to the analogy and the difference between
this problem and the preceding. In the first case, the question is virtually, how great
a weight does the state of the given body enable us to raise a given distance, no other
permanent change being produced in external bodics. In the second case, the ques-
tion is virtually, what amount of heat does the state of the given body enable us to
take from an external body at a fixed temperature, and impart to another at a higher
fixed temperature. In order that the numerical values of the available energy and of
the capacity for entropy should be identical with the answers to these questions, it
would be necessary in the first case, if the weight is measured in units of force, that
the given distance, measured vertically, should be the unit of length, and in the second
case, that the difference of the reciprocals of the fixed temperatures should be unity.
If we prefer to take the freezing and boiling points as the fixed temperatures, as
233 — 314 =10.00098, the capacity for entropy of the body in any given condition
would be 0.00098 times the amount of heat which it would enable us to raise from the
freezing to the boiling point (i. e., to take from a body of which the temperature re-
mains fixed at the freezing point, and impart to another of which the temperature
remains fixed at the boiling point).

The relations of these quantities to one another and to the surface of dissipated
energy are illustrated by figure 3, which represents a plane perpendicular to the axis
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can be diminished, using for that purpose, according to the condi-
tions, only the force derived from the body itself. The conditions

of v and passing through the point A, which represents the initial state of the body.
MN is the section of the surface of dissipated
energy. Qe and Q7 are sections of the planes
7=0and ¢ = 0, and therefore parallel to the
axes of ¢ and # respectively. AD and AE are
the energy and entropy of the body in its ini-
tial state, AB and AC, its available energy and
its capacity for entropy respectively. It will
be observed that when either the available
energy or the capacity for entropy of the body E R A
is 0, the other has the same value. Except in / c
this case, either quantity may be varied without
affecting the other. For, on account of the /
curvature of the surface of dissipated energy,
it ir evidently possible to change the position of M
the point representing the initial state of the ;
body so as to vary its distance from the surface Q D
measured parallel to one axis without varying that measured parallel to the other.

As the different senses in which the word entropy has been used by different writ-
ers is liable to cause misunderstanding, it may not be out of place to add a few words
on the terminology of this subject. If Professor Clausius had defined enéropy so that
its value should be determined by the equation

dQ
dS = — -

instead of his equation (Mechanische Wirmetheorie, Abhand. ix, § 14; Pogg. Ann.,
July, 1865)

Fig. 3.
L3

where S denotes the entropy and 7 the temper:mnre. of a body and dQ the element of
heat imparted to it, that which is here called capacity for entropy would naturally be
called available entropy, a term the more convenient on account of its analogy with the
term available enerqy. Such a difference in the definition of entropy would involve no
difference in the form of the thermodynamic surface, nor in any of our geometrical
constructions, if only we suppose the direction in which entropy is measured to be
reversed. [t would only make it necessary to substitute — » for # 1n our equations,
and to make the corresponding change in the verbal enunciation of propositions. Pro-
fessor Tait has proposed to use the word entropy * in the opposite sense to that in
which Clausius has employed it,” (Thermodynamics, § 48. See also § 178), which
appears to mean that he would determine its value by the first of the above equations.
lie nevertheless appears rubsequently to use the word to denote available energy
(8182, 2d theorem). Professor Maxwell uses the word entropy as synonymous with
available energy. with the erroneous statement that Clausius uses the word to denote
the part of the energy which is not available, (Theory of Heat, pp. 186 and 188). The
term entropy, however, ag used by Clausius does not denote a quantity of the same
kind (i. e., one which can be measured by the same unit) as energy. as is evident from
his equation, cited above, in which @ (heat) denotes a quantity measured by the unit
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require that the energy of the body shall not be altered nor its
entropy diminished. Hence the quantity sought is represented by
the distance of the point representing the initial state from the sur-
face of dissipated energy, measured parallel to the axis of volume.

Fourthly. An initinl condition of the body is given as before, [ts
volume is not allowed to be increased. No work is allowed to be
done upon or by external bodies, nor any heat to pass to or from
them, except a certain body of given constant temperature ¢.  From
the latter conditions may be excepted as before bodies in which no
permanent changes are produced. It i3 required to find the greatest
amount of heat which can be imparted to the body of constant tem-
perature, and also the greatest amount of heat which can be taken
from it, under the supposed conditions. It through the point of the
initial state a straight line be drawn in the plane perpendicular to
the axis of », so that the tangent of the angle which it makes with
the direction of the axis of 4 shall be equal to the given tempera-
ture ¢/, it may casily be shown that the vertical projections of the
two segments of this line made by the point of the initial state and
the surface of dissipated energy represent the two quantities required.*

These problems may be modified 80 as to make them approach
more nearly the economical problems which actually present them-
selves, if we suppose the body to be surrounded by a medium of con-
stant pressure and temperature, and let the body and the medium
together take the place of the body in the preceding problems. The
results would be as follows:

If we suppose a plane representing the constant pressure and tem-
perature of the medium to be tangent to the surface of dissipated
energy of the body, the distance of the point representing the initial
state of the body from this plane measured parallel to the axis of &
will represent the available energy of the body and medium, the dis-
tance of the point to the plane measured parallel to the axis of # will
represent the capacity for entropy of the body and medium, the dis-
tance of the point to the plane measured parallel to the axis of v will
represent the magnitude of the greatest vacuum which can be pro-
duced in the body or medium (all the power used being derived from

of energy, and as the unit in which T (temperature) is measured is arbitrary, S and Q
are evidently measured by different units. It may be added that entropy as defined
by Clausius is synonymous with the thermodynamic function as defined by Rankine.
* Thus, in figure 3, if the straight line MAN be druwn so that tan NAC = ¢, MR
will be the greatest amount of heat which can he given to the body of constant tem-
perature and NS will be the greatest amount which can be taken from it.
TRANS. CONNECTIOUT ACADEMY, Vol II 30 DEc., 1873,
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the body and medium); if a line be drawn throngh the point in a
plane perpendicular to the axis of », the vertical projection of the
segment of this line made by the point and the tangent plane will
represent the greatest amount of heat which can be given to or taken
from another body at a constant temperature equal to the tangent of
the inclination of the line to the horizon. (It represents the great-
est amount which can be given to the body of constant temperature,
if this temperature is greater than that of the medium; in the reverse
case, it represents the greatest amouut which can be withdrawn from
that body). In all these cases, the point of contact between the
plane and the surface of dissipated energy represents the final state of
the given body.

If a planc representing the pressure and temperature of the medium
be drawn through the point representing any given initial state of
the body, the part of this plane which falls within the surface of dis-
sipated energy will represent in respect to volume, entropy, and
energy all the states into which the body can be brought by reversi-
ble processes, without producing permanent changes in external
bodies (except in the medium), and the solid figure included between
this plane figure and the surface of dissipated energy will represent
all the states into which the body can be brought by any kind of pro-
cesses, without producing permanent changes in external bodies
(except in the medium).*

* The hody under discussion has been supposed throughout this paper to be homo-
geneous in substance. But if we imagine any material system whatever, and suppose
the position of a point to be determined for every possible state of the system, by
making the co-ordinates of the point equal to the total volume, entropy, and energy of
the system, the points thus determined will evidently form a solid figure bounded in
certain directions by the surface representing the states of dissipated emergy. In
these states, the temperature is necessarily uniform throughout the system; the pres-
sure may vary (e. g., in the case of a very large mass like a planet), but it will always
be possible to maintain the equilibrium of the system (in a state of dissipated energy)
by a uniform normal pressure applied to its surface. This pressure and the uniform
temperature of the system will be represented by the inclination of the surface of dia-
sipated energy according to the rule on page 383. And in regard to such problems as
have been discussed in the last five pages of this paper, this surface will possess, rela-
tively to the system which it represents, properties entirely similar to those of the sur-
face of dissipated energy of a homogeneous body.
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ERRATA.

Page 1, line 13, for “ Flordia,” read Florida.

11, * 35, * “immargination,” read emargination.
16, * 26, * *“sgpistome,” read epistome.
31, “ 18, “ “ Podopthalmia,” read Podophthalmia.
36, “ 9, “ “ Bucrete,” read Eucrate.
35, last line but one, for * margin,” read margins.
106, line 4, from foot, for “ Norton Street,” read Blake Street.
108, * 11, " “ “twenty rods,” read twenty-one rods.
118, “ 11, for “styiferus,” read styliferus.
138, * 11, “* “immargination,” read emargination.
139, * 11, * “immarginate,” read emarginate.
153, first line of foot note, for ‘‘is marked 3,” read is marked 3.
162, above ‘‘ Furyplaz,” insert CARCINOPLACID &
188, line 8, for ‘‘spinosus,” read spinosum.
197, ¢ 31, “ “palpaster,” read polpaster.
343, in title of paper, for * 1873, read 1872.
343, under No. 5, for “ varible,” read variable.
346, No. 24, line 7, for * Montague,” read Montagne.
348, No. 44, for * Euteromorpha,” read Enteromorpha.





