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Abstract. The wave propagation mechanism of changes in displacement polarizations was stud-
ied in unidirectional graphite/epoxy composite materials. Change in Displacements can be large
enough to cause a transition in the mode or displacement polarizations from longitudinal to trans-
verse. These unusual mode transitions are a result of the peculiar elastic anisotropy observed in
only a few crystals and unidirectional graphite/epoxy composities at high-fiber volume fractions.
Theoretical calculation of these mode transitions were compared with experimental measurements.
Mode transititons occur when the wave vector orientation is varied from 51.9° to 74.4° in unidirec-
tional samples of T300/5208 graphite/epoxy composite with a 0.6"-fiber volume fraction. Energy
flux deviation and particle displacement directions and amplitudes also were compared with the-
ory. To show this mode transition, an attenuation study was performed. The attenuation coefficient,
measured in units of reciprocal time, does not appear to depend on the wave vector orientation
and the wave type (quasi-transverse and quasi-longitudinal waves) at 5-MHz frequency. But the
attenuation coefficient, expressed in units of reciprocal length, does depend on the wave type and
the wave vector orientation because the wave velocity is included in the calculation of this coeffi-
cient. Previous studies have focused on how anisotropy and attenuation influence the stress wave
speed (eigenvalues), but in this study we focused more on how the same parameters influence the
displacement polarizations (eigenvectors) of the same propagating waves. Because eigenvalues
and their corresponding eigenvectors are both solutions of the same eigenvalue problem, more
attention should be given 10 measurement of the eigenvectors.

List of Symbols

E; = Young’s moduli
G;; = shear moduli
v;; = Poisson’s ratios
Ci; = elastic-stiffness coefficients
Cijiy = fourth-rank elastic-stiffness tensor
n; = normalized wave vector (vector perpendicular to the plane wave)
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p = mass density
d;; = Kronecker delta function
v = phase velocity
w; = normalized particle displacement direction
J; = energy flux vector
ojj = stress tensor
u; = particle displacement velocity
u; = incident wave of particle displacement amplitude
ugr = quasi-longitudinal wave of particle displacement amplilﬁdc
upr = quasi-transverse wave of particle displacement amplitude
uy = pure transverse of particle displacement amplitude
o, = attenuation coefficients in s
ay = attenuation coefficients in £
Ay = maximum amplitude
Qrr(0) = longitudinal component of quais-longitudinal wave at 8
Qr7(8) = transverse component of quasi-longitudinal wave at ¢
Q7.(8) = longitudinal component of quasi-transverse wave at ¢
Qrr(#) = transverse component of quasi-transverse wave at ¢
6,y = wave vector orientation corresponding to mode transition

Introduction

The industrial use of nondestructive evaluation (NDE) methods has greatly expanded
since the second World War [1]. NDE methods have continued to develop and now
can be classified into five major methods: radiographic, ultrasonic, magnetic, electri-
cal, and penetrant [1]. Ultrasonic nondestructive evaluation is one of the most useful
methods. It deals primarily with industrial and medical applications of both low-density
and high-intensity ultrasonic energy [2]. To apply these methods, mechanics of wave
propagation in materials must be understood. Considerable research has been performed
on isotropic materials such as metals, ceramics, and polymers in which the mechanics
of wave propagation are now well known.

Less is known about ultrasonic NDE in newer anisotropic materials. In the mid-1950s
a new class of light-weight fiber-reinforced anisotropic materials with high strength and
stiffness was developed for aerospace applications [3]. These materials are no longer
homogeneous but are a heterogenous combination of two different materials: fiber and
matrix. The fibers are typically strong, stiff, and resistant to heat; however, they are
brittle. The matrix materials are typically ductile and have low density, but they have low
stiffness and strength. Together these materials form an anisotropic composite that has
the advantages of both materials, but it introduces a new source of wave attenuation due
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to material heterogeneity. Wave propagation mechanics in these materials are typically
more complicated than in homogeneous isotropic materials.

This article attempts to increase the understanding of ultrasonic wave propagation
in unidirectional heterogeneous anisotropic composite materials. Typically, wave speed,
energy flux deviations, and attenuation have been the primary parameters studied by
various ultrasonic NDE methods. We extend our understanding of wave propagation
mechanisms in anisotropic composites by studying displacement polarizations. The ef-
fect of signal attenuation caused by wave dispersion in heterogeneous materials is used to
accurately measure changes in displacement polarizations. Several new and interesting
physical mechanisms are observed when waves propagate in anisotropic materials. In
fact, a mode transition occurs in the displacement polarizations, “mode transitions,” from
quasi-longitudinal to quasi-transverse when the wave vector orientation is varied with
respect to the fiber orientation [4]. This mode transition will be verified experimentally.

Theory
Composite Materials

Composite materials are mostly anisotropic. Graphite/epoxy composites can be consid-
ered as linear, clastic, homogencous (for long wavelengths), and anisotropic. A unidi-
rectional graphite/epoxy material may be modeled to be linear, elastic, homogencous,
and transversely isotropic with five independent elastic constants: E, Ez, G2, G13, V)3
oras Cyy, Ca3, Cyq, C2, Cy3. This coordinate axis system assigns the x3-axis to the fiber
axis.

For our material system of continuous parallel fibers we were concerned with the
fiber spacing and the wavelength of the propagating wave. For the worst case we verified
that the shortest wavelength is 350 pum (at 5 MHz) compared with the longest fiber
spacing of 8 pm for our material system at a fiber volume fraction of 0.6. Hence our
material appeared to be a well-mixed continuum of anisotropic material with respect
to the frequencies used in this study. Although we can safely assume a homogencous
approximation for wave speed, wave amplitude is affected nonetheless by energy losses
in a heterogeneous material and will be accounted for in the section on attenuation.

By considering the homogeneous linear elastic and transversely isotropic material
properties, the elastic-stiffness constant tensor Cij; can be writlen as follows in con-
tracted notation:

Ci3CaCy 0 0 0 1)
0O 0 0 Cu O 0
0O 0 0 0 Cyu 0

0 0 0 0 0 Ciy—Ciz

[

The material studied was a T300/5208 graphite/epoxy composite material with uni-
directional fiber reinforcement. The fiber volume fraction of the material tested was 0.6.
The average fiber diameter of the composite was about 8 pm.



104 Vandenbossche, Kriz, Oshima

Smith [5], Kriz and Stinchcomb [6, 7], and Datta et al. [8] calculated the composite
material properties from the fiber and matrix properties, and verified them by using
the properties measured by ultrasonic wave propagation. For the same material used in
this study, Kriz and Ledbetter [4] showed that C;; = 13.6, C33 = 144, Cj» = 7.00,
C|3 . 547, C4_1 = 6.01 GPa.

Wave Propagation Mechanisms

Wave Speed (Eigenviaues) and Wave Displacement Polarization (Eigenvectors).  Chris-
toffel’s equations are the equations governing the wave propagation mechanisms in solid
materials:

(Cijkenjnx — pV*&0we =0, i, j.k €=1.2.3. 2)

The solution to Christoffel’s equation establishes the particle displacement wave types.
The eigenvalues of this equation correspond to the phase velocities, whereas the eigen-
vectors are the particle displacement directions. Because of the physical properties of
the material, the matrix Cjjen;ng is symmetric and positive definite for any u;, when
u; (Cijrenjng)uy) = 0 and equal to 0 only for u; = 0. Therefore, the eigenvalues are real
and positive, and the eigenvectors are orthogonal with respect to each other for distinct
eigenvalues.

By knowing the material properties, the elastic-stiffness tensor, the mass density [4],
and the components of the wave vector direction (normalized vector that is perpendicular
to the plane wave), the theoretical phase velocities and particle displacement polarizations
can be calculated.

For instance, when 8 = 51.85°, the eigenvalues pv” are 4.95 Gpa, 66.6 GPa, and
10.9 GPa, where n; = [0, sin(#), cos(#)]. Therefore, given the density [4], the corre-
sponding phase velocities are:

vy 1752 m/s

VgL = 6431 m/s (3)
Vor = 2600 ‘{TU{S,

and the normalized eigenvectors are:

1 0 0
wy = |0}, ws = | 0.1194 |, wsy = | —0.9928 | . (4)
0 0.9928 0.1194

These three waves are labeled purely transverse (7'), quasi-longitudinal (Q L), and quasi-
transverse (Q7), respectively. Other wave speeds and particle displacements polariza-
tions calculated by Kriz and Ledbetter [4] for different wave vector orientation clearly
show this transition of displacement polarization from pure longitudinal to pure trans-
verse on both QL and Q7T surfaces (see Fig. 1). The mode transition shown in Fig. 1 is for
pure fiber elastic properties that were extrapolated using Hashin’s Composite Cylinder
Assemblage Model: C33 = 235 GPa, C) = 20.0, C|; = 9.98, (13 = 6.45, C4y = 24.0
[4]; note that Cas = Cp.
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Fig.1. Mode transitions of displacement polarizations on QL and Q7T wave surfaces for unidirectional
graphite/epoxy at fiber volume fraction of 1.0: L — QL — QT — T ona Vp, surface, calculations:
fiber elastic properties Csz = 235 GPa, € = 20.0, C)» = 9.98, C;3 = 6.45, Css = 24.0 [4]): note that
C.u > C][ ["U

The phase and group velocities are different from each type of wave (pure transverse,
quasi-transverse, quasi-longitudinal). They also depend on the wave vector orientation
and the clastic stiffness tensor. Typically, vor and vy are smaller than vy, . Although the
frequencies of the three waves are generated by the same transmitter transducer, the quasi-
transverse wavelength has to be smaller than the quasi-longitudinal wavelength because
of different wave speeds. This was verified numerically by the computer simulation—
visualization model of Kriz and Gary [9].

Energy Fluxes (Energy Bifurcation). The wave particle vibration directions, the plane
wave equation, and the wave characteristics are known, but the energy flux of the waves
is also important. The energy flux vector is

Ji = —aiju;. (5)

Substituting the expression for plane waves and general constitutive equations into the
energy flux equation, an alternate cxpression for energy flux is

Ji = Cijrewikew;@A? sin®(kexy — wt). (6)

Taking a time average over one period, the energy flux propagation direction reduces to
1

Ji = Eijul-"'Hie w;. (7

For different wave vector orientations, the energy flux deviation, A, calculation and
measurement were calculated previously and measured by Kriz [4, 6, 9—12]. In addition,
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Table 1. Particle displacement directions for different
wave orientations.

Particle displacement directions (eigenvectors)

Wave Pure Quasi- Quasi-
vector transverse longitudinal transverse
orientation wave wave wave
(degrees)

1 0 0

28 0 0.0445 —0.999
0 0.999 0.445
1 0 0

45 0 0.0864 —0.9963
0 0.9963 0.0864
2 0 0

51.85 0 0.1194 —0.9928
0 0.9928 0.1194
1 0 0

55 0 0.1296 —0.9916
0 0.9916 0.1296
l 0 0

70 0 0.3257 —0.9455
0 0.9455 0.3257

Prosser et al. [11] showed that the energy flux deviation shifts to a smaller angle when
a load is applied to the sample. The shift depends on the applied load direction and
amplitude.

To summarize, the wave propagation displacement and energy flux deviations in a
unidirectional graphite/epoxy composite are shown in Fig. 2.

The computer simulation—visualization of these energy propagation directions using
the finite differences method [9] clearly shows this propagation mechanism for different
wave vector orientations.

Displacement Amplitudes (Amplitude Bifurcation). For vgp and vgr, similar particle
displacement polarizations were calculated from Christoffel’s equation for a wave vector
orientation equal to 51.85°. Kriz and Heyliger [10] did the same calculation for wave
vector orientations equal to 287, 457, 557, and 70°. A summary of these results are listed
in Table 1.

At the boundary surface between the transducer and the sample, the boundary condi-
tions for stresses and displacement can be written as

cr,-i-nj- —J,-j;nj =0

ul —u!’ =o0. (8)

By considering the second condition, at the boundary the following relationship can be
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(a) Displacement Polarization Directions and Magnitudes
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Fig. 2. Visual summary and definitions of wave propagation mechanisms that exist in anisotropic
media: (a) QT and QL displacement polarizations and magnitudes are orthogonal and equal at ¢ =
51.85: (b) energy flux deviations also are influenced by anisotropy.
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deduced:

Uy —ugL — ur — ugr=0. )
Here the index / implies the incident wave where samples are cut such that incident
angles, which are shown in Fig. 2, correspond to 28, 45°, 51.85°, 55°, and 70° angles
to the fiber orientation.
If the calculations are made at 51.85° wave vector orientation, then the results of
Eq. (4) are combined with Eq. (9) to give:

0 0 ur 0 0
0‘7864“; —10.1 194!!9,{_ == 0 = —0.99281197' =101, (fO)
0.6177u, 0.9928u .. 0 0.11%upr 0

which leads to

Ur = 0
ugr = 0.707u, (I
ugr = 0.707u,.

Thus, the mode transition wave vector orientation is defined when the particle displace-
ment amplitudes of the quasi-longitudinal and quasi-transverse waves are equal:

Hop = UQT- (12)

This boundary condition also applies for 28°, 457, 55, and 70° wave vector orientations,
and the results are compared in Fig. 3, where we have set the incident amplitude to unity.

In Fig. 3 the particle displacement amplitude of the quasi-longitudinal wave is larger
than the quasi-transverse particle displacement when the wave vector orientation is below
51.85”. These same components are equal at the 51.85" wave vector orientation. Above
51.85¢, the quasi-longitudinal particle displacement amplitude is smaller than the quasi-
transverse particle displacement amplitude. Because the dominant mode of displacement
transitions is from longitudinal to the transverse component, this behavior is referred to
as a “mode transition.”

Mode Transition. This mode transition also can be observed as a continuous transition
by plotting the displacement deviation angle § versus the wave vector orientation ¢ at
various fiber volume fractions (sec Fig. 4). The displacement deviation angle § can be
written as:

§ = cos (m;w;): (13)

sec reference [4], where the wave vector n; and the particle displacement deviation
direction w; depend on the wave vector orientation with respect to the fiber direction &.
Therefore, § versus 8 can be plotted as shown in Fig. 4. With this graph, mode transitions
are identified at various wave vector orientation angles @,,,. This graph also shows that
mode transitions start at a fiber volume fraction of 0.3.
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Fig. 3. Displacement magnitudes calculated at various wave vector orientations where the incident
wave amplitudes is unity.

For fiber volume fractions between 0.3 and 0.96, the transition is partial, the quasi-
transverse mode transitions back to the quasi-longitudinal mode and again becomes a
purely longitudinal mode with increasing #. Two mode transitions then are observed.

Because the elastic properties in reference [4], Fig. 4, are calculated using Hashin’s
Composite Cylinder Assemblage Model, properties can be extrapolated at fiber volume
fractions greater than 0.91. Under these idealized conditions, mode transitions can be
studied at fiber volume fractions greater than 0.96. Beyond 0.96, the second mode tran-
sition does not occur, and the quasi-transverse wave remains a Q7 wave and transitions
into a purely transverse wave with increasing 6. There is only one known crystal, cal-
cium formate, that displays this type of mode transition [13]. Indeed, this type of mode
transition is rare, and hence the concept of a displacement polarization transformation
is not common knowledge.

The objective of this study was to verify experimentally the mode transition that
occurs in a graphite/epoxy composite at (.6-fiber volume fraction. In order to allow a
direct comparison with the results published in reference [4], the same material specimens
that were tested in reference [4] were used in this study.

Because these transitions are rare, some precautions were taken because the labels
generally given to the different waves do not necessarily correspond to the physical state
of the wave. For instance, the quasi-transverse and quasi-longitudinal labels used in this
study or in all previous publications are not always respectively quasi-longitudinal and
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Fig.4. Continuity of wave displacement polarization deviations from the wave normal at various wave
vector orientations and fiber volume fractions show two types of transitions: type I, L — QL — QT —
QL — Landtypell,L - QL — QT — T.

quasi-transverse wave surfaces. Most authors use this type of notation [4, 6, 7, 9-12,
14-16] as a matter of habit, but this notation should not suggest that only one type of
“mode” displacement polarization exists on a single surface.

The mode transition angle 6,,, can be calculated using Christoffel’s equation (2)
and the elastic-stiffness matrix, Eq. (1). The eigenvalue solutions are the roots of the
characteristic equation derived from Christoffel’s equation determinant

[Chn? + C(,Gﬂ% + Cunil — pv2, [Cia + Ceglnina, [Cy3 + Calnna
[Ci2 + Ceplnina, [Copn? + Cyyni + Caan] — pv?, [Ci3 + Culnonz| = 0. (14)
[Ci3 + Caslnins, [Cy3 + Caglnans, [Cuni + Cun3 + Cyni] — pus

In our case the wave vector n; has the following orientation with respect to the x3-fiber
axis:
0
sin(@) | . (15)
cos(d)
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To solve this determinant, mathematical software (Mathematica) was used [17]. The
matrix in Eq. (14), the elastic-stiffness values, and the wave vector as a function of ¢
were substituted into Mathematica. The complete set of mathematical computations are
given in reference [18]. The eigenvalues and corresponding eigenvectors were calculated
as a function of 6. The n;w; product then was calculated as a function of 6. At the
mode transition, the particle displacement deviation is equal to 45°. Therefore, Eq. (13)
becomes

]
nw; =cos45” = — =0.707107 at 6 = O,,. (16)

5

Because of the size of the equations, Mathematica was not able to solve for 8, therefore
the half-interval method was used to solve for the two n; p; products. The two mode
transitions were solved and were equal to 51.85° and 74.4°, respectively.

Attenuation

When a stress wave passes through a material, a portion of its energy is absorbed or scat-
tered; hence, the amplitude decreases. The attenuation is mainly due to absorption (also
called internal damping), scattering (or geometric dispersion), diffraction, and beam
spreading. The different attenuation mechanisms and their importance are discussed in
reference [ 18]. Differentiating the various attenuation mechanisms was beyond the scope
of this study. The collective effect of absorption, scattering, diffraction, and beam spread-
ing were included into a single empirical value of attenuation. Certainly the dispersion
of energy by diffraction had a significant influence on our attenuation coefficient.

The energy dissipation mechanism and the scattering losses from the beam can be
expressed in terms of any one of these parameters which are collectively modeled by the
attenuation factor («), logarithmic decrement (8), or dissipation factor (Q) [19]. Here,
only the attenuation factor was used.

It is assumed that the transducer produces a plane stress wave that is attenuated as it
propagates through the sample. The equation for the plane wave is

Uj (X 1) = Ajeinsa=eD i ]2 3, (17)

where repeated m indices indicate summation.

An attenuated wave is obtained by assuming that the velocity is complex and that
either the propagation vector or the frequency is complex.

For a complex propagation vector we have real and imaginary parts,

= vy +ivy
k = k +iat, (18)

where the superscript on & is not an index but represents the dimension of reciprocal
length. The plane wave equation becomes

u; {xm‘ f) — Ajc’_m"'fei(k'“x‘”_w”. J — I, 21 3. (]9)

Since «f was expressed in terms of distance x, af has the dimension of a reciprocal
length.



112 Vandenbossche, Kriz, Oshima

For a complex frequency we have

v = v+l
w = w +ia’. (20)
The plane wave equation becomes
) (X, 1) = Aze™ el Fnm=t)  j=1,23, @21

and ¢’ has the dimension of a reciprocal time.

Experimental Procedure

In order to verify experimentally the existence of a mode transition, it was necessary
to use regression analysis on the shape of the received waveform and the log decay of
multiple echos.

Curve-Fitting Signal Waveform

Experimental errors accounted for unexpected variations in the shape of the measured
voltage as the transducer was moved in 0.5-mm increments along the top surface of the
specimen shown in Fig. 2. The waveform shape was approximated by an appropriate
function followed by a regression analysis of the second order.

The proposed function is

y = e—h.\" . (22)

where y is the measured receiver transducer voltage and x is the transducer position
measured from the center line of the transmitting transducer.
The relationship below was used to match all of the data of the signal waveform:

y—yo = Ai’_h{x—"r‘]}_, (23)

By observing the data, it is obvious that when x is equal to infinity, ¥ must be equal to
zero; therefore, yg is also equal to zero. The final equation is

y= Ae -I:(.r—.!'nJ:_ (24)

This equation was written as a polynomial function to perform regression analysis on
the experimental data. The equation above can be written as logarithms:

In(y) = In(A) — h(x — xo)* (25)

and

In(y) = —hx? + 2hxpx + In(A) + hxg. (26)
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By changing the variables,

Y = In(y)

X =x

a=—h @7)
b = 2Hxg

¢ = In(A) —hx;‘;.
a second-order polynomial equation can be deduced:
Y =ax’ +bx +c¢ (28)

The new parameters of this equation were calculated by multiple regression analysis.
The coefficients a, b, and ¢ are then known. The constants A, i, and xq can be determined
from the following relationships:

h = —a
xo = —b/2a (29)

A= e(r— b jda)

A partial summary of results is presented in the Results and Discussion section. A
complete summary is provided in reference [18].

Attenuation Measurement

Generally, a single short-duration pulse of high-frequency stress wave is introduced into
the solid sample to measure the attenuation [19]. The attenuation can be measured on
a parallel side sample, in order to achieve multiple echos [1]. Several echoes then are
recorded and the parameters of the envelope equation are calculated [1].

The envelope equation is

A(t) = Age™". (30)
If two echos are measured, the following equation can be used to calculate attenuation:
] Alr
o = In| A0} 31)
fa—1 A(r2)

Otherwise, a linear regression is performed. This linear regression corresponds to the
following envelope equation:

In(A(#)) = In(Ag) — a't. (32)

Farticle Displacement Direction Calculation

A transducer can measure either the transverse component of the wave (shear wave
transducer) or the longitudinal component of the wave (longitudinal wave transducer).
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These components will be measured and the particle displacement deviation will be
calculated. Because orthogonality conditions exist between the displacement directions
of the two waves, the following relationship can be written:

8= tan*l [-——QLF(B)] = tan_' I:——-QTL(H)] ~ (33)
0r1(6) Qrr@)

where a new notation is introduced to identify the longitudinal and transverse components
of meaured voltage for the QL and QT waves:

Q1 (8) is the longitudinal component of the QL wave at 6,
O (6) is the transverse component of the QL wave at 6.

The displacement deviation angle depends on either the ratio of a transverse compo-
nent over a longitudinal component of the quasi-longitudinal wave or the opposite ratio
of the quasi-transverse wave. Since these measurements are carried out by two differ-
ent transducers, the measured amplitudes cannot be compared directly. To cancel the
differences in characteristics between both transducers, such as piezoelectric properties,
amplification factors, etc., differences between measurements corresponding to the same
components will be calculated.

A reference point is required to make these calculations. This point corresponds to
the mode transition. Since the mode transition occurs when the displacement deviation
is equal to 45° (tan45° = 1) at this point, the transverse component must be equal to the
longitudinal component for both quasi-longitudinal and quasi transverse waves. Since
the quasi-transverse and quasi-longitudinal particle displacement amplitudes are equal at
the mode transition wave vector orientation, the following relationship can be deduced:

Q."_I.(Hmr) = QLT(BHH‘) == QT!.{QJM) = QTT(HHH)' (34)

Simple but lengthy relationships [18] then can be used to calculate the differences in
each of the components of Eq. (34) such that plots of § versus @ can be constructed to
verify experimentally a mode transition.

Experimental Procedure

A pulse was launched into the graphite/epoxy composite by a 5-MHz transducer. This
transducer was coupled to the composite sample with a Phenyl Salicylate couplant. The
Sonotrace 30 couplant was used to measure the longitudinal component of the waves,
and the SWC couplant was used to measure the transverse component of the waves.
The receiving transducer, carrying a 0.180-Kg weight, next was placed on the receiving
surface of the specimen. The pulser—receiver device was connected to the display device.

The amplitude of the waves was recorded for each position of the receiving transducer
on the sample surface. A measurement was performed every 0.5 mm along the surface.
Identical pulse characteristics (energy, response rate, and damping) were set up for all
of the experiments. The sending pulse signal corresonds to a capacitive discharge. The
received signal amplitude was the maximum amplitude of the signal. The fast Fourier
transform of the signal was verified to make sure that the signal frequency corresponded
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to the sending pulse signal. The frequency was constant, which suggets no dispersion,
and our assumption of homogeneity was confirmed. The same weight was always used
to keep a constant frequency and contact pressure. All of the experiments were carried
out at the same room temperature (= 20°).

Five samples with different fiber orientations were studied. The angles between the
fiber orientation and the perpendicular line to the surface along which the pulse was sent
were 28, 45°, 51.85° (mode transition), 55°, and 707, respectively. The accuracy of the
angles was 0.1°. In fact, these angles correspond to the angle between the wave vector
and the fiber orientation. Indeed, above 70° the measurement of the different waves
became difficult because of the wave beam spreading and the interferences occurring
between the three different waves. In order to obtain accurate measurements, the sending
and receiving surfaces had to be parallel.

Results and Discussion
Measured Data

The experiments were repeated three times for the angles corresponding to 45° and 55°
to increase the reliability of our results. Only one experiment was carried out on the
sample having a wave vector orientation equal to 28 and 70°. The particle displacement
amplitude versus position then was plotted; a complete set of figures are given in reference
[18]. Figures 5a and b display the results for wave vector orientations equal to 45° and 55°.
The transverse component cannot be compared to the longitudinal component directly
because the transducer measuring the longitudinal component was different from the
transducer measuring the transverse component. The curves corresponding to the wave
vector orientation equal to 51.85° [18] show that the attenuation of the quasi-longitudinal
wave if the assumption that these two waves should be equal is verified.

Fitting Data

The data then were fitted by the mathematical model previously defined. Then the cal-
culated and measured particle displacement amplitudes were plotted on the same graph
to verify the reliability of the mathematical model; a complete summary of the results
is given in reference [18]. Figure 6 shows an example of these curves and demonstrates
the accuracy of the regression analysis. The average correlation coefficient was 0.982.

In reference [18] the energy flux deviation also was measured and compared to the
theoretical calculation. The energy flux deviation depends on the wave type (QL, QT ,
T)and on the wave vector orientation. Therefore, the geometrical attenuation is probably
different for any wave type and wave vector orientation. In fact, all waves will travel
through paths having different geomterical properties.
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Fig. 6. Fitted data using regression analysis: average correlation coefficient 0.982 for all wave types.

Arttenuation Calculation

For the same frequency, the quasi-transverse wavelength is different from the quasi-
longitudinal wavelength because the phase velocities are different. When the wave vec-
tor orientation is equal to 51.85°, the different wavelengths are calculated and are equal
t0 0.350 mm, 1.286 mm, and 0.520 mm for the pure transverse, quasi-longitudinal, and
quasi-transverse waves, respectively. The fiber diameter is about 8 ;em. All of the wave-
lengths are greater than ten times the dimension of two fiber diameters. The wavelengths
are large enough; therefore, the scattering of the waves is not the most important factor
of the overall attenuation. The quasi-transverse wavelength and velocity are consider-
ably smaller than the quasi-longitudinal ones; therefore, the quasi-transverse wave will
oscillate more when both waves travel the same distance. Since the absorptions prin-
cipally are due to losses in energy during these transformations, the absorption of the
longitudinal component of the quasi-transverse wave also will be larger than the ab-
sorption of the longitudinal component of the quasi-longitudinal wave. The losses in
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Fig. 7. Comparison of attenuation coefficients measured in reciprocal time for various wave compo-
nents.

energy of the transverse components are probably due to the viscoelastic effect. Since
the quasi-transverse wave will complete more full-cycle oscillations, the attenuation of
the transverse component of the quasi-transverse wave will be larger than the attenuation
of the transverse component of the quasi-longitudinal wave.

The attenuation factor can be expressed in two different units, either the reciprocal
length (m ") or the reciprocal time (s~'). The two attenuation factors are linked by the
following relationship:

o =ve'. (35)

The attenuation factor was measured in the reciprocal time unit. To measure the
attenuation factor, several echoes were recorded. The maximum number of echoes was
always recorded, but, generally. only two echoes were observed on the display screen.
The two first echoes then were observed and the attenuation coefficient was calculated
[18].

If the different attenuation coefficients are compared, it can be deduced by observa-
tion in Fig. 7 that the attenuation coefficients are relatively constant; the average value is
0.489 us~!. A variance anaysis was performed with all of the data except the attenuation
of the longitudinal component of the quasi-longitudinal wave. The wave type and the
wave vector orientation were the analyzed parameters. If a 5% confidence is considered,
the null hypothesis (all attenuation coefficients are equal) cannot be rejected for both
parameters. No attenuation coefficient differs from the others: therefore, it can be con-
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ponents.

cluded that the attenuation coefficient expressed in reciprocal time units docs not depend
on the wave type and wave vector orientation. If the attenutation coefficient is expressed
in the reciprocal length unit, the attenuation coefficient is not constant (see Fig. 8). The
qusai-transverse attenuation is then more significant than the quasi-longitudinal attenua-
tion. This is due to the smaller velocity and wavelength of the quasi-transverse wave. The
attenuation, which is associated with reciprocal time, also depends on the wave vector
orientation. This attenuation coefficient does not depend on the displacement magnitude;
therefore, the longitudinal and the transverse components should have the same attenua-
tion coefficient. This statement was verified for all of the wave vector orientations except
for the 28° wave vector orientation.

Corrected Data

The attenuation occurring within the composite sample then was considered. The particle
displacement amplitude corresopnding to a nonattenuated wave was calculated for all of
the specimens in reference [18] and shown here for angles 45° and 55° in Figs. 9a and
b, respectively, as was outlined earlier.

When the wave vector orientation is equal to 51.85°, the particle displacement am-
plitude of the quasi-transverse wave is equal to the particle displacement amplitude of
the quasi-longitudinal wave. This equality of displacement amplitudes, Eq. (34), is now
verified experimentally. For the other wave vector orientations, the particle displacement
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Fig.9. Corrected displacement amplitudes at two wave vector orientations: (a)45 and (b) 55
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direction cannot be deduced since the longitudinal component and the transverse com-
ponent were measured by two different transducers. These curves show that the energy
of the quasi-transverse wave is smaller than the quasi-longitudinal energy when the wave
vector orientation is below 51.85° (the quasi-transverse particle displacement amplitudes
are smaller than the quasi-longitudinal ones) [18]. Above 51.85°, the quasi-transverse
wave energy is greater than the quasi-longitudinal wave energy [18]. This confirms the
theoretical calculation.

Displacement Deviation (8) Versus Wave Vector Orientation (6)

Since the relationship in Eq. (34) has been verified experimentally, the differences be-
tween the wave components and the mode transition component now can be calculated,
and then the particle displacement deviations (§) can be calculated. These results were
reported on the displacement deviation versus wave vector orientation plot and compared
with theory (see Fig. 10).

The mode transition can be observed on this plot, even if the experimental data are not
always close to the theoretical curves. The differences observed in Fig. 10 correspond to
error from the measurement of different parameters and other approximations. Details
of these differences are discussed in reference [18].
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Conclusions

The objective of this study was to predict analytically and verify experimentally the mode
transition of a stress wave propagating in a unidirectional graphite/epoxy composite.
Comparison of theory and experiment is shown in Fig. 10.

All properties predicted by Christoffel’s equation have been verified experimentally.
Christoffel’s equation predicts three different waves propagating through these materials.
These waves are called the quasi-longitudinal, pure transverse, and quasi-transverse
waves. The particle displacement directions of these waves are the eigenvector solutions
to Christoffel’s equation. The eigenvalues correspond to the phase velocity of these three
waves. By imposing a frequency, the wavelength of the waves can be deduced. The energy
flux calculation gives the directions in which the waves propagate through the material.
Finally, the boundary conditions determine the particle displacement amplitudes of these
three waves. Therefore, the various propagation properties in unidirectional anisotropic
composites are known if we neglect the energy lost by attenuation of the material.

When the wave vector orientation changes with respect to the fiber orientation, a mode
transition was observed for fiber volume fractions greater than 0.3. For fiber volume
fractions above 0.94, the first wave transitions from pure longitudinal and becomes
quasi-longitudinal, then quasi-transverse, and finally pure transverse with increasing
wave vector orientation. The second wave follows the opposite path because of the
orthogonality conditions.

For fiber volume fractions between 0.3 and 0.94, the first wave is longitudinal at
0° wave vector orientation, becomes quasi-longitudinal, quasi-transverse, quasi-longitu-
dinal, and back to longitudinal in that order as the wave vector orientation increases.
The second wave is first transverse, next quasi-transverse, then transitions to quasi-
longitudinal, returns to quasi-transverse, and finally transverse when the wave vector
orientation is increased. Two mode transitions occur in this case. For instance, at 0.6-fiber
volume fraction, the mode transitions occur at 51.85° and 74.4° wave vector orientations,
respectively. The first mode transition was observed experimentally. Five wave vector ori-
entations (28°,45°,51.85°, 55%, and 70°) were studied. No wave vector orientation above
70° was investigated because of beam spreading. The wave amplitude predictions were
confirmed experimentally. At the 51.85% wave vector orientation, the quasi-transverse
and the quasi-longitudinal waves have the same particle displacement amplitude. Below
this point, the particle displacement amplitude of the quasi-longitudinal wave is larger
than the quasi-transverse amplitude. Above this point, the quasi-transverse wave particle
displacement amplitude becomes larger. The energy flux deviation dependence on the
wave vector orientation also was verified experimentally.

To make the experimental data comparable to the theory, the attenuation of the wave
had to be considered. The attenuvation was measured in units of reciprocal time. At
5 MHz, the attenuation coefficient in units of reciprocal time did not depend on the wave
vector orientation and the wave type (quasi-longitudinal or quasi-transverse waves). The
wavelength was considerably larger than the fiber diameter. But, when the attenuation
coefficient was expressed in units of reciprocal length, the wave vector orientation and the
wave type influenced the attenuation. This dependence is due to the fact that the velocity
was included in the attenuation. The velocity depends on the wave vector orientation
and the wave type.
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With these new insights we have added to our understanding of wave displacement

polarizations in anisotropic material systems. Future research should be focused on the
study of different attenuation mechanisms.
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